

The TUTOR Language

The TUTOR Language

Bruce Arne Sherwood
Computer-based Education Research Laboratory

and Department of Physics
University of Illinois

Urbana, Illinois

CONT~OL DATA
EDUCATION COMPANY
,;:J 1::\ a service of
~ ~ CONTR..oL DATA COR,.I'ORI'TION

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle

© 1977 by Bruce Arne Sherwood.

All rights reserved. No part of this mate­
rial may be reproduced by any means
without permission in writing from the
publisher and the author.

ISBN: 0-918852-00-5

Library of Congress Catalog Card Number: 77-77589

Printed in the United States of America

Preface

The PLATO IV computer-based education system was developed in
the Computer-based Education Research Laboratory (CERL) of the
University of Illinois, Urbana. PLATO IV is the result of 15 years of
research and development effort led by Donald Bitzer, director of CERL.
The University of Illinois system presently links 950 graphical-display
terminals to a large Control Data Corporation computer in Urbana. Some
of these terminals are located as far away as San Diego and Washington,
D.C. Additional PLATO systems with their own complements of termi­
nals are located elsewhere in the United States. Students are individually
tutored at terminals by interacting with PLATO lesson materials created
by teachers. There are over 4,000 hours of PLATO lessons already
available. These lessons span a wide range of subject areas and are used
by students in elementary schools, community colleges, military training
bases, universities, and commercial training programs. Authors of lesson
materials are teachers who use the TUTOR language to tell PLATO how
to interact with students on an individual basis. This book explains the
TUTOR language in detail and is intended to help authors write quality
lesson materials.

In 1967, Paul Tenczar (then a graduate student in zoology) conclud­
ed that existing methods of creating computer-based lesson material on
the earlier PLATO III system were unnecessarily difficult. As a result he
originated the TUTOR language. There followed a rapid increase in the
number of authors and in the number and degree of sophistication of

v

Bruce
Rectangle

Preface

vi

the lessons they wrote. This active author community in turn spurred the
continual development and refinement of TUTOR by requesting addi­
tional needed features. In 1970, CERL began implementing the PLATO
IV system, which afforded a rare opportunity to take stock of the
evolution of TUTOR up to that point and make a fresh start. Many useful
simplifications were made, and many important features were added. The
growth of PLATO IV into a continental network brought together an
ever-wider spectrum of authors through the rich interpersonal communi­
cations facilities available on PLATO, and the suggestions and criticisms
from these authors contributed to the present form of the TUTOR
language. Also of great importance has been the large number of students
who have used PLATO lessons, and whose experiences have influenced
the development of TUTOR to meet their needs. The TUTOR language
described in this book is, therefore, based on heavy use-testing.

In the earliest phase Paul Tenczar and Richard Blomme were mainly
responsible for TUTOR development. Since then, many people have
been involved, some as full-time CERL staff members and some as high
school, undergraduate, or graduate students. It is impossible to adequate­
ly acknowledge the various contributions, and difficult even to list all of
those who have played a major role, but an attempt should be made. Paul
Tenczar is head of TUTOR development. Full-time people have included
David Andersen, Richard Blomme, John Carstedt (Control Data), Ruth
Chabay, Christopher Fugitt, Don Lee, Robert Rader, Donald Shirer,
Michael Walker, and this author. They have been assisted by James Parry
and Masako Secrest, and by Doug Brown, David Frankel, Sherwin
Gooch, David Kopf, Kim Mast, Phil Mast, Marshall Midden, Louis
Steinberg, Larry White, and David Woolley. William Golden has also
provided useful advice.

All of these people have been involved mainly with "software", the
programming of the PLATO computer in such a way as to permit authors
and students to write and use computer-based lessons. Of equal impor­
tance to the technical success of PLATO are the CERL scientists,
engineers, and technicians who invented, designed, and implemented the
unique terminals and telecommunications devices ("hardware") which
form the PLATO educational network. CERL personnel who have been
heavily involved in hardware development include Donald Bitzer, Jack
Stifle, Fred Ebeling, Michael Johnson, Roger Johnson, Frank Propst,
Dominic Skaperdas, Gene Slottow, and Paul Tucker.

The latter part of Chapter 1 is adapted from a PLATO III document,
"The TUTOR Manual", by R. A. Avner and P. Tenczar.

I thank Elaine Avner and Jeanne Weiner for editorial assistance,
Sheila Knisley for typing, and Stanley Smith for photographic work. I
appreciate the encouragement William Golden gave me to finish the task.

Bruce
Rectangle

Contents

1 Introduction 1

How to Use This Book 1
Sample PLATO Lessons 3
The PLATO Keyboard 8
Basic Aspects of TUTO R 13

2 More on Creating Displays 23

Coarse Grid and Fine Grid 23
The -box-, -vector-, and -circle- Commands 25
Large-size Writing: -size- and -rotate- 26
Animations (Moving Displays): -erase-

and -pause- 28
-pause-, -time-, and -catchup- 30
The -mode- Command 33
Automated Display Generation 35

3 Building Your Own Tools: The -do-
Command 39

4 Doing Calculations in TUTOR 43

Giving Names to Variables: -define- 47
Repeated Operations: The Iterative -do- 49
Showing the Value of a Variable 51
Passing Arguments to Subroutines 53

vii

Bruce
Rectangle

Contents

5 Sequencing of Units Within a Lesson 59

Summary of Sequencing Commands 69
The -helpop- Command: "Help on Page " 72
The -imain- Command 73

6 Conditional Commands 77

Logical Expressions 80
The Conditional -write- Command (-writec-) 82
The Conditional -calc- Commands: -calcc-

and -calcs- 84
The Conditional -mode- Command 85
The -goto- Command 85
The Conditional Iterative -do- 90
The -if- and -else- Commands 91

7 Judging Student Responses 95

Student Specification of Numerical
Parameters 101

Student Specification of Non-Numerical
Parameters 104

Difference Between Numeric and
Alphabetic Information 105

More On -answer- and -wrong-
(Including -list- and -specs-) 106

Building Dialogs With -concept-
and -vocabs- 111

Numbering Vocabulary Words 117
The -judge- Command 118
Finding Key Words: The -match-

and -storen- Commands 123
Numerical and Algebraic Judging:

-ansv- and -wrongv- 126
Handling Scientific Units: -ansu-,

-wrongu-, and -storeu- 133
The -exact- and -exactc- Commands 136
The -answerc- Command: A Language Drill 137
Summary 139

8 More About Judging 141

Stages in Processing the -arrow- Command 141
Repeated Execution of -join- 142

viii

Bruce
Rectangle

Contents

Judging Commands Terminate Regular
State 144

The -goto- is a Regular Command 146
Interactions of -arrow- with -size-, -rotate-,

-long-, -jkey-, and -copy- 149
Applications of -jkey- and -ans- 151
Modifying the Response: -bump- and -put- 156
Manipulating Character Strings 159
Catching Every Key: -pause-, -keytype-,

and -group- 164
Touching the Screen 168
Summary 169

9 Additional Display Features 171

More on the -write- Command 171
Extensions to the Basic Character Set 175
The "initial entry unit" (ieu) 177
Smooth Animations Using Special

Characters 178
Creating aNew Character Set 179
Micro Tables 181
The Graphing Commands: Plotting

Graphs with Scaling and Labeling 182
Summary of Line-drawing Commands:

-draw-, -gdraw-, -rdraw- 185
The -window- Command 190
More on Erasing: The -eraseu- Command 192
Keeping Things on the Screen:

"inhibit erase " 196
Interaction of "inhibit erase " with -restart- 199
The -char- and -plot- Commands 199
The -dot- Command 200

10 Additional Calculation Topics 201

Defining Your Own Functions 202
Arrays 204
Segmented Variables 207
Branching Within a Unit: -branch-

and -doto- 212
Array Operations 214
Integer Variables and Bit Manipulation 217
Byte Manipulation 229

ix

Contents

x

Vertical Segments 230
Alphanumeric to Numeric: The -compute-

Command 231
The -find- Command 235
The -exit- Command 236

1 1 Manipulating Data Bases 237

The -common- Command 237
The Swapping Process 240
Common Variables and the Swapping

Process 243
The -storage- Command 246
Using -datasets- 248
Sorting Lists 248

12 Miscellany 249

Other Terminal Capabilities 249
Student Response Data 251
Additional Tools for Teaching Foreign

Languages 252
Routers and -jumpout- 254
Instructor Mode 255
Special "terms" 255

APPENDICES 257

Appendix A. Where to Get Further
Information 258

Appendix B. List of TUTOR Commands 259
Additional TUTOR Commands

Not Discussed in This Book 260
Appendix C. List of Built-in -Calc-

Functions
System Variables

261
262

Bruce
Rectangle

Introduction

How to Use This Book

This book describes in detail the TUTOR language, which is used by
teachers to create lesson materials on the PLATO IV computer-based
education system. Teachers use the TUTOR language to express to the
PLATO computer how PLATO should interact with individual students.
Students and teachers interact with PLATO through terminals each of
which includes a plasma display panel screen and a typewriter keyboard,
as shown. Using TUTOR, an author of a computer-based lesson can tell
PLATO how to display text, line drawings, and animations on the
student's screen. The author can ask PLATO to calculate for the student,
to offer the student various sequencing options, and to analyze student
responses.

The TUTOR language was originally created and developed for
educational purposes. However, educational interactions are probably
the most subtle and difficult of all the interactions a person might have
with the author of materials presented through a computer. It is now clear
that other kinds of interactions are also handled well by means of
TUTOR, including recreation and communication. Nevertheless, for
concreteness this book will concentrate on the instructional applications
of TUTOR.

1

1

Bruce
Rectangle

Bruce
Rectangle

The TUTOR Language

2

It is hoped that you have already studied the textbook "Introduction
to TUTOR" by J. Ghesquiere, C. Davis, and C. Thompson, and the
associated PLATO lessons. These materials are designed to teach you not
only basic aspects of TUTOR but also how to create and test your own
lessons on the PLATO system. The present book, "The TUTOR Lan­
guage," does not attempt to describe the latter aspects, such as how to
insert or delete parts of your lesson and how to tryout your new lesson.
It does cover all aspects of the TUTOR language: that is, what state­
ments to give PLATO but not how to type these statements into a
permanent PLATO lesson space. By studying this book you could, in
principle, write down on paper a lesson expressed in the TUTOR lan­
guage, but when you go to a PLATO terminal to type in your new les­
son, you may not know what buttons to push to get started. Also, this
book discusses TUTOR in more detail than does "Introduction to
TUTOR," which makes "The TUTOR Language" less appropriate for
your initial study.

It is also hoped that as you study this book you will try things out at a
PLA TO terminal. TUTOR is designed for interactive use, in which case
an author writes a short segment of a lesson, tries it, and revises it on the
basis of the trial. Normally, the sequence write, try, revise, and try again
takes only a few minutes at a PLATO terminal. It is far better to create a
lesson this way than to write out a complete lesson on paper, only to find
upon testing that the overall structure is inappropriate.

It is also helpful to try the sample lesson fragments discussed in this
book. It is literally impossible to describe fully in this book how the
examples would appear on a PLATO terminal. The PLATO medium is
far richer than the book medium. One striking example is the PLATO
facility for making animations such as a car driving across the screen. As
another example, you must experience it directly to appreciate how easy it
is at a PLATO terminal to draw a picture on the screen (by moving a
cursor and marking points), then let PLATO automatically create the
corresponding TUTOR language statements which would produce that
picture. PLATO actually writes a lesson segment for you!

This book is written in an informal style. Sometimes, when the
context is appropriate, topics are introduced in a different chapter than
would be required by strict adherence to a formal classification scheme.
In these cases, the feature is at least mentioned in the other chapter, and
the index at the end of the book provides an extensive cross-linkage. The
order of presentation, emphasis, examples, and counter-examples are all
based on extensive experience with the kinds of questions working
authors tend to ask about TUTOR.

Bruce
Rectangle

If you are a fairly new TUTOR author, read this book lightly to get
acquainted with the many features TUTOR offers. Plan to return to the
book from time to time as your own authoring activities lead you to seek
detailed information and suggestions. Your initial light reading should
help orient you to finding appropriate sections for later intensive study.
After you feel you know TUTOR inside and out, read this book carefully
one last time, looking particularly for links among diverse aspects of the
language. This last reading will mean much more to you than the first!

If you are already an experienced TUTOR author, read this book
carefully with two goals in mind: to spot features unused in your past
work but of potential benefit, and to acquire a more detailed understand­
ing of the structural aspects of the language, with particular emphasis on
judging.

The remainder of this introductory chapter contains some interesting
examples of existing PLATO lessons, a description of the PLATO
keyboard including the use of the special function keys, and a review of
the most basic aspects of TUTOR.

Sample PLATO Lessons

Figures 1-1 through 1-6 on the following pages give several examples
of interesting PLATO lessons. All were written in the TUTOR language.
They have been chosen to give you some idea of the broad range of
TUTOR language capabilities. Each example is illustrated with a photo­
graph of the student's screen at a significant or representative point in the
lesson. (See the note at the bottom of pg. 7.)

The PLATO terminal's display screen consists of a plasma display
panel which contains 512 horizontal electrodes and 512 vertical elec­
trodes mounted on two flat plates of glass between which is neon gas.
Any or all of the quarter-million (512 x 512) intersections of the hori­
zontal and vertical electrodes can be made to glow as a small orange
dot. (The word "plasma" is the scientific name for an ionized gas; the
orange glow is emitted by ionized neon gas.) As can be seen in the
sample photographs, the PLATO terminal can draw lines and circles
on the plasma panel as well as display text using various alphabets.
Both drawings and text are actually made up of many dots. TUTOR has
many display features for writing or erasing text and drawings on the
plasma panel.

INTRODUCTION

3

Bruce
Rectangle

The TUTOR Language

T)I'pe your CfJest ion abol.J.t tl1e: unknown and then
prees I£XT.

When you. have identi fied i:he compound pre~~ BACK.

) doe~ it di~eolve in H20

It is sliaht1y soluble in water.

4

SCORE •

tor table~ of data pr .. ~e DATA. To r .. view preee LAB.

tor help pr .. ee HELP.

Fig. 1-1. Dialog in which a chemistry stu­
dent attempts to identify an unknown
compound by asking experimental ques­
tions. (Stanley Smith) LOCCl1OTIVE'~ Turn:

Your n.JlTIber~: 3 2 4
Your move: .. (3+2) • ~ 28

;~e55 -!'£XT-

61 62 63 6" 65 66 68

1

'Q' , \ 3

5 •

Fig. 1-2. Game of mathematical strategy in
which two grade-school children compete
in constructing advantageous mathemati­
cal expressions from random numbers ap­
pearing on the spinners. (Bonnie Ander­
son)

Bruce
Rectangle

Bruce
Rectangle

lH".Ay) (11,-3) A 11."1

fB ",P,::.: ; (-3, 5J B 5.S ·:m

The bo/ UJa 1 bed fr0f>1 t, a" t-:> rn<::an5 .:> f b"O

displ20c<::ment",: fI·'.:>rII "a" to "b", l<:>v!<::d b')-, a
move from "b" to "c". ~k>JJ ' alk the gl.,-l dlre~tl'7'

from "a" to ".,:":

Fig. 1-3. Tutorial on vectors in which the
student walks a boy and girl around the
screen and measures their vector displace­
ments. (Bruce Sherwood)

INTRODUCTION

Tranelate:

The thIrd man i3 a 3pecialiet in ph/eice. ok

) The aIrl ~~~i ~~~~~~ the small mus~um. no

The airl wee woinw toward a small mueeum.

Fig. 1-4. Russian sentence drill. The mark­
ings under the student's translation of the
second sentence indicate incorrect words
and misspellings. (Constance Curtin)

5

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle

The TUTOR Language

Add parts to the .. :ell bel·)w t·.:, =,>!ntheslze
the proteIn chaIn ...

6

LeuClne--Aspartlc aCld--Glut,:"fnlC o'.:ld

GACTTAGTC
CTGAATCf'1G

CUGAAU'A(~

.6-LeUC.l ne

.:)-HsF,art 1·: a·.: Id
c~::-Glut.3rnl': a':ld

~ ~ ~
l:;t=V= UIJA I~UC

l=ur~HHUCAI:; -----
m-F:~,IA

What ''.1",_,1·, './.:-u 11 k" t·:· a.:J.:P
()H. CtH I

In f:··a.rt l·::U 1.3r.

(HELP, DATA, LAB, BAn',

Fig. 1-5a Fig. 1-5b

Graphical illustration of the biochemical steps involved
in protein synthesis. The student introduces appropriate
DNA, RNA, etc., into an initially empty cell, then watches
the synthesis proceed. Here the synthesis breaks down
for lack of a crucial part. (Paul Tenczar)

Bruce
Rectangle

Kiom da f1ot-oj estas? kvar jes

Kiom da steloj estas?

~ g ~ ~ ?~> ~

til ~f$ ~
c-,
*'

g~ ~ ~,:'S} ~

Fig. 1-6. Using graphics to teach Esperan­
to without using English. Here the stars
have been circled to emphasize the stu­
dent's mistake in counting. (Judith Sher­
wood)

These are actual photographs of the plasma panel. The display shows orange text
and drawings on a black background, but the pictures are shown here as black on
white for ease of reproduction. The plasma panel size is 22 cm. square (8.5 in.
square).

INTRODUCTION

7

The TUTOR Language

8

Fig. 1 -7

The PLATO Keyboard

Every PLATO terminal has a keyboard like the one pictured above.
The keyboard has a number of special features which are closely related
to certain aspects of the TUTOR language, such as the HELP key which
allows students to access optional sections of a lesson written in TUTOR.

The central white keys include letters, the numbers 0 through 9 along
the top row, and punctuation marks. Note that the numbers 0 and 1 are
different from the letters 0 and 1. The zero has a slash through it to
distinguish it unmistakably from the letter o. Except for these distinc­
tions, the white keys are the same as the keys on a standard typewriter.
Capital letters are typed by pressing either of the SHIFT keys while
striking a letter key. Some keys show two different characters, such as the
keys in the upper row, e.g., depressing a SHIFT key while striking a "4"
produces a "$". *

Eight of the letter keys (d, e, w, q, a, z, x, and c all clustered around
the s key) have arrows marked on them pointing in the eight compass
directions. Typing "e" with a SHIFT key depressed normally produces a
capital "E" on the screen, not a northeast arrow. The directional arrows
are shown because these keys are sometimes used to control the motion of
a cursor or pointer on the screen. In this context, the student presses an
un-shifted "e" and the lesson interprets this as a command to move a
cursor northeast on the screen, rather than a command to display an "e"

*Since this book deals with technical entities, which are set off by quotation marks, it is
necessary to violate certain rules of punctuation.

Bruce
Rectangle

on the screen. Such redefinitions of what a key should do in a particular
context provide enormous flexibility. Another interesting example is the
use of the keyboard to type Russian text in the Cyrillic alphabet.

Spaces (blank characters) are produced by striking the long "space
bar" at the bottom of the keyboard. Holding down a shift key while
hitting the space bar produces a backspace. An example of the back­
space's use is in underlining. The underlined word "£~t" is produced by
typing "c", "a", "t", backspace, backspace, backspace, underline, under­
line, underline (underline is shift-6, not to be confused with the minus
sign or dash). Typing "T", backspace, "H", will superimpose the two
letters, making a " ffi." The backspace is used for superimposing charac­
ters, whereas the ERASE key (just to the right of the letter p) is used to
correct typing errors.

A few black keys on the left side of the keyboard are mainly
associated with mathematical operations: they include plus, minus (also
used as a dash), times and divide (-;- is equivalent to the slash /). The ¢= is
used in TUTOR calculations to assign values to variables. The TAB key
is most often used by authors writing lessons rather than by students
studying lessons. The TAB key's function is similar to the tabulate
function on standard typewriters, e.g., pressing TAB once is equivalent to
hitting the space bar as many times as is necessary to reach a preset
column on the screen. Shift-TAB, called CR for "carriage return", to
continue the typewriter analogy, moves typing down one line and to the
left margin. Shift-plus produces a I (which means summation in mathe­
matical notation) and shift-minus produces a.:l (which means difference
in mathematical notation).

The black keys at the right of the keyboard are called "function" keys
because they carry out various functions rather than displaying a charac­
ter on the screen. By far the most important function key is NEXT. The
cardinal rule for studying PLATO lessons is "When in doubt, press
NEXT." Pressing NEXT causes the next logical thing to happen, such as
proceeding on to a new display, asking for a response to be judged,
erasing an entire incorrect response, etc. The second most important
function key is ERASE, which is used to correct typing errors. Each press
of ERASE erases one character from the screen. Pressing shift-ERASE
(abbreviated as ERASEl) erases an entire word rather than a single
character. Note the difference from the backspace (shift-space) which
does not erase and is used for superimposing characters.

The EDIT key is also used for correcting typing. Suppose you have
typed "the quik brown fox" when you notice the missing "c" in "quick".
You could press ERASEI twice to erase "fox" and "brown", use ERASE
to get rid of the "k", then retype "ck brown fox". The EDIT key makes

INTRODUCTION

9

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle

The TUTOR Language

10

such retyping unnecessary. Instead of hitting ERASEl, you press EDIT
which makes the entire sentence disappear. Press EDIT again, and the
entire first word "the" appears. Press EDIT again and you see "the quik"
on the screen. Use ERASE to change this to "the quick". Now hit
EDIT twice to bring in the words "brown" and "fox". The final result is

"the quick brown fox". This takes longer to describe here in words, but
pressing the EDIT key a few times is much easier and faster than doing
all the retyping that would otherwise be necessary. The EDIT 1 key
(shift-EDIT) brings back the entiJ:e remaining portion of a sentence. For
example, after inserting the "c" to make "the quick", you could hit
EDITI once to bring back "brown fox". You should type some sentences
at a PLATO terminal and study the effects produced by EDIT and
EDITl.

The COpy key is closely related to the EDIT key and is used mainly
by authors. While EDIT and EDITI cycle through words you have just
typed, COpy and COPYI bring in words from a pre-defined "copy"
sentence. These keys are used heavily when changing or inserting
portions of a lesson.

The display "a2b" can be made by hitting "a", then SUPER, then
"2", then "b". SUPER makes a non-locking movement higher on the
screen for typing superscripts. Notice that SUPER is struck and released,
not held down while typing the superscript. Striking shift-SUPER makes
a locking movement, so that the sequence "a", shift-SUPER, "2", "b"
will produce "a2b ". The SUB key is similar to SUPER. For example, the
display "H20" is made by typing "H", SUB, "2", "0". A locking
subscript results from shift-SUB, which is also what is used to get down
from a locking superscript. Similarly, shift-SUPER will move up from a
locking subscript.

There are 34 additional characters not shown on the keyboard which
are accessible through the MICRO key. For example, striking and
releasing the MICRO key followed by hitting "p" produces a "'IT". The
sequence MICRO-a produces an a. Typing "e", MICRO, "q", produces
"e", whereas typing "E", MICRO, "q", produces "E". Note the "auto­
backspacing" which not only backspaces to superimpose the accent mark
but also places the accent mark higher on a capital letter. Six MICRO
options involve autobackspacing: '(q), '(e), "(u), '(x), -(n), and. (c).
The last accent mark (MICRO-c) is used for creating cedillas (<; and Q)
and does not involve a different height for capitals. It is easy to remem­
ber these keys because of natural associations. The' and' accent marks
are on the q and e keys which have the"'-and? arrows marked on
them. The umlaut .. usually appears on a "u" (German li). The circum­
fle~ , is on the x key. The tilde - usually appears on an "n" (Spanish Ii).

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle

The Greek letters a, (3, 0, e, A, fL, 'IT, p, a, and ware produced by typing
MICRO followed by a, b, d, t, 1, m, p, r, s, or w. Here is a complete list:

key MICRO-key key MICRO-key

~ «
("embed" symbols)

1 t>
a a (alpha) < (shift-~) :S (less than or equal)
b (3 (beta) > (shift-1) ~ (greater than or equal)
d o (delta) [(shift-2) {

(braces)
t e (theta)] (shift-3) }
I A (lambda) $ (shift-4) # (pound sign)

m fL (mu) 5 @ (each)
p 'IT (pi) 6 ~ (arrow)
r p (rho) ~ (not equal)
s (J' (sigma) (shift-=) (identity)
w w (omega) (approximate)
q , (grave) 0

0 (degree sign)
e , (acute) I (vertical line)
c > (cedilla) D -. (east)
u .. (umlaut) W i (north)
n - (tilde) A 4- (west)
x ~ (circumflex) X ~ (south)
C © (copyright) t (special)
Q (leftward writing) + & (ampersand)
R (rightward writing) / \ (backwards slash)

CR (shift- (special TAB for x 0 (matrix multiply)
TAB) leftward writing) (shift-x) x (vector product)

These are the standard MICRO definitions. You can change these by
setting up your own micro table. This is discussed in Chapter 9.

The standard character set includes all the characters we have seen so
far, including the Greek letters and other characters accessible through
the MICRO key. The shifted MICRO key, called FONT, lets you shift
from this standard set of characters to another set of up to 126 special
characters which you can design.

These special characters might be the Cyrillic, Arabic, or Hebrew
alphabet, or they can be pieces of pictures, such as the characters (; , 5 ,

and ~ which form a car when displayed side by side: e-:;,. Unlike
MICRO which only affects the next keypress, FONT locks you in the

INTRODUCTION

11

Bruce
Rectangle

The TUTOR Language

12

alternate "font" or character-set. You press FONT again to return to
the standard font. The creation of new character sets is described in
Chapter 9.

If the author activates it, the ANS key can be used by the student to
get the correct answer to a question. This is discussed in Chapter 7. The
shifted ANS key, TERM, when pressed causes the question "what term?"
to appear at the bottom of the screen. At this point, you can type anyone
of various keywords in order to move to a different part of the lesson. The
use of TERM is discussed in Chapter 5.

If you set up an optional help sequence, the student can press the
HELP key to enter the sequence. The student can then press BACK (or
BACKl) to go back to where he or she was when originally requesting
help, or will be brought back to the original point upon completion of the
help sequence. You could also specify a different help sequence accessi­
ble by pressing HELPl (shift-HELP). The six keypresses HELP,
HELPl, LAB, LABl, DATA, and DATAl can, if activated by the author,
allow the student a choice of six different help sequences. You can also
activate NEXT, NEXTl, BACK and BACKl, but these simply let the
student move around in the lesson without remembering or returning to
the original place. In other words, these four keys do not initiate help
sequences. Usually, BACK is reserved for review sequences or similar
situations where you want to back up.

The STOP key throws out output destined for the terminal. A useful
example is the case of skimming through pages of text in an on-line
catalog or collection of notes. If you decide you want to skip immediately
to the next page, you might press STOP in order to avoid the wait
required to finish plotting the present page.

The STOPl or shift-STOP key plays a crucial role in PLATO us­
age. You press STOPl to leave a lesson you are studying. When a stu­
dent is ready to leave the terminal he or she presses STOPl, which per­
forms a "sign-out" function. Among other things, the sign-out procedure
brings the student's permanent status record up to date so that days later
he or she can sign-in and resume working at the same point in the
lesson. When an author presses STOPl to leave a lesson that he or she
is testing, the author is taken back to a point in the PLATO system
where he or she can make changes in the lesson before trying it again.

The key next to HELP, with the square (0) on it, is similar to the
EDIT key, but retrieves one character at a time, instead of a whole word.
It is particularly useful when used in association with the EDIT key. The
shifted square key is presently used as the ACCESS key, as described in
Chapter 9.

Bruce
Rectangle

Basic Aspects of TUTOR

In their simplest form, lessons administered by the PLATO interac­
tive educational system consist of a repeating sequence: a display on the
student's screen followed by the student's response to this display. The
display information may consist of sentences, line drawings, graphs,
animations (moving displays)-nearly anything of a pictorial nature, and
in any combination. The student responds to this display by pressing a
single key (e.g., the HELP or NEXT key), by pointing at a particular area
of the screen, by typing a word, sentence, or mathematical expression, or
even by making a geometrical construction. Lesson authors provide
enough details about the possible student responses so that PLATO can
maintain a dialog with the student. The sequence of a display followed
by a response is the basic building block of a lesson and is called a "unit"
in the TUTOR language. This "display-response" terminology is conve­
nient but is not intended to imply that the student is in a subservient
position. Often what we will conventionally call the student "response,"
is a question or a command issued to PLATO to respond with a display of
some kind.

An author constructs a lesson by writing one unit at a time. For each
unit, the author uses the TUTOR language to specify: (1) the display that
will appear on the student's screen; (2) how PLATO is to handle student
responses to this display; and (3) how the current unit connects to other
units.

A statement written in the TUTOR language appears as follows:

write How are you today?

command tag

The first part of the statement (-write-) is called the "command," while
the remainder (How are you today?) is called the "tag." Command names
mnemonically represent PLATO functions. The tag gives additional
specifications on how the function is to be carried out. In this case, the
tag specifies what text is to be written on the screen.

The following is an entire unit written in TUTOR. Figure 1-8 shows
what a student would see on the screen while working on the unit.

INTRODUCTION

13

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle

The TUTOR Language

unit geometry
at 1812
write
draw
arrow
answer
write
wrong
write

14

What is this figure?
510;1510;1540;510
2015
<it,is,a> (right,rt) triangle
Exactly right!
<it,is,a> square
Count the sides!

Count the. ~ide~j

Fig. 1-8

We will discuss each statement of this unit in detail.

unit geometry

The -unit- statement initiates each unit. The tag (geometry) will
become useful later when units are connected together to form a lesson.
Each unit must have a name. No two units in a lesson may have the same
name.

at 1812

The -at- statement specifies at what position on the screen a display
will occur. The tag "1812" means that we will display something on the
18th line in the 12th character position. The top line of the screen is line 1
and the bottom line is line 32. There are 64 character positions going from
01 at the left edge of the screen to 64 at the right. Thus, 101 refers to line
1, character position 01 (the upper left corner of the screen), while 3264
refers to line 32, character position 64 (the lower right corner of the
screen). Note that "0" means the number zero, as distinct from the letter

Bruce
Rectangle

Bruce
Rectangle

I
2
3
~
S
6
7
8
9

3 l~
2 12

13
11

, 15
I 16
n 17

6~ character po$itiona

,~ '6 12 16 2' 2~ 28 32 36 ~. ~~ 48 S2 S6 6. 6~

e :: f-_---l Line 18, character pOO!!ition 12.

O!! 211
21
22
23
2~
25
26
27
ze
29
311
31 32 ~ ________________________________ ~

Fig. 1-9. Illustration of "at 1812"

write What is this figure?

The -write- statement causes the text contained in the tag to be
displayed on the student's screen. The writing starts at line 18, character
position 12, as specified by the preceding -at- statement.

draw 510;1510;1540;510

The -draw- statement specifies a straight-line figure to be displayed
on the screen. In this particular case a series of straight lines will be
drawn starting at location 510 (line 5, character position 10), going
vertically downward to location 1510, then to the right to location 1540,
and finally back to the starting point, 510. This produces a right triangle
on the student's screen.

arrow 2015

INTRODUCTION

15

The TUTOR Language

16

The -arrow- statement acts as a boundary-line that separates preced­
ing display statements from the following response-handling statements.
Thus, what precedes the -arrow- command produces the screen display
which remains visible while the student works on the question. State­
ments after the -arrow- command are used in handling student responses
to the display. In addition, the -arrow- statement notifies TUTOR that a
student response is required at this point in the lesson. The tag of the
-arrow- statement locates the student response on the screen. An arrow­
head is shown on the screen at this place to indicate to the student that a
response is desired and to tell him or her where the response will appear.
In this case the arrowhead will appear on line 20, character position 15.
The student's typing will start at 2017, leaving a space between the
arrowhead and the student's first letter.

answer <it,is,a> (right,rt) triangle

wrong <it,is,a>square

The -answer- and -wrong- statements are used to evaluate the
student's response. The special brackets < and> enclose optional words,
while the parentheses enclose important words which are to be consid­
ered synonyms. Thus any of the following student responses would
match the -answer- statement: "a right triangle", "it is a rt triangle", "rt
triangle", etc.

H the response matches the tag of the -answer- statement, TUTOR
writes "ok" after the student's response. For a match to a -wrong­
statement, "no" is written. An "ok" judgment allows the student to
proceed to the next unit, whereas a "no" judgment requires the student to
erase and try again. Any response not foreseen by -answer- or -wrong­
statements is judged "no".

Having matched the student's response, TUTOR proceeds to execute
any display statements following the matched -answer- or -wrong­
statement. Thus, student responses of "a right triangle" and "square"
will trigger appropriate replies. In the absence of specific -at- statements,
TUTOR will display these replies three lines below the student's
response on the screen.

Special help is provided to the student if his answer is partially

Bruce
Rectangle

Bruce
Rectangle

correct. Here is what happens if the student" responds with "a lovely
tringle, right?":

;b a lovely tringle, right?
xxxxxxxx6.==:::==:::= ¢:

TUTOR automatically marks up the student's response to give detailed
information on what is wrong with the response. Thc word "lovely" does
not belong here and is marked with xxxxxxx, the D. shows where a word is
missing, the word "tringle" is misspelled and is underlined, and the word
"right" is out of order, as is indicated by the small arrow.

Statements can be added to the current example unit which will
greatly improve it. Consider the following:

unit geometry
at 1812
write What is this figure?
draw 510;1510;1540;510
arrow 2015

~specs okcap
answer <it,is,a> (right,rt) triangle
write Exactly right!
answer <it,is,a> three*sided !=lea:5~ be more ~~Cl flC.

(right,rt) polygon It hae a ~eclal afli:le.
What Ie. thie fla;ure?

Handling write Yes, or a right triangle.)0 a trlo!l~le no

additional wrong <it,is,a> triangle
responses at 1605

write Please be more specific.
It has a special angle.

draw 1410;1412;1512
wrong <it,is,a> square
write Count the sides!

Fig. 1-10.

As you can see, any number of -answer- and -wrong- statements can
be added to the response-handling section of the unit. Time and effort
spent by an author in providing for student responses other than the
common answer can greatly increase the ability to carryon a personal
dialog with each student. Figure 1-10 shows what the student will see if
he responds with "a triangle". The construction "three*sided" is called a
"phrase". A phrase is a set of words to be considered together for
purposes of spelling and word order. As another example, a question
about Columbus's flagship might involve the phrase "Santa*Maria".

INTRODUCTION

17

Bruce
Rectangle

Bruce
Rectangle

The TUTOR Language

18

The -specs- statement is introduced here. It is used to give optional
specifications on how the student's response is to be handled. In this case
the tag, "okcap", specifies that any capitalization in the student's re­
sponse is optional. Without this specification, TUTOR would consider
"Right Triangle" to be misspelled. There are many convenient options
available in a -specs- statement. For example, "specs okextra,noorder"
specifies that extra words not mentioned explicitly in following -answer­
and -wrong- statements are all right, and that the student's word order
need not be the same as the word order of the -answer- and -wrong­
statements to achieve a match. Such options can be used to greatly
broaden the range of responses which can be handled properly.

Lessons could be written using only the commands already dis­
cussed. Explanatory units could be written using only display com­
mands. Tutorial units could be interspersed to test a student's under­
standing of the lesson material. Thus a single linear chain of units could
form a lesson. However, mastery of a few more TUTOR commands opens
up a wealth of "branching" or sequencing possibilities. Branching, the
technique of allowing alternate paths. through a lesson, is one of the keys
to personal dialog with each student. The example unit will, therefore, be
expanded to include -next-, -nextnow-, -back-, and -help- commands:

unit

~l~:~;
"--l.S back

at
write
draw
arrow
specs
answer
write
wrong
at

geometry
moregeom
thelp1
intro
1812
What is this figure?
510; 1510; 1540;510
2015
okcap
<it,is,a) (right,rt) triangle
Exactly right!
<it,is,a) triangle
1605

write Please be more specific.
It has a special angle.

draw 1410; 1412; 1512
wrong <it,is,a) square

~ nextnow treview

The tag of the -next- statement following the -unit- command gives

Bruce
Rectangle

Bruce
Rectangle

the name of the next unit the student will see upon the successful
completion of unit "geometry". The -next- statement is necessary because
the next unit for a student in a highly-branching lesson sequence may not
be the unit following in the lesson. For example, a diagram of the lesson
flow involving unit "geometry" might be:

Partial Diagram of Lesson

BACK

INTRODUCTION

geometry
Optional Branches

NEXT

end

unit moregeom

In moving from one unit to another the screen normally is automati­
cally erased to make room for the displays produced by the following
unit.

The -help- statement refers to a help unit which the student may
reach through the use of the HELP key. Help units are constructed in the
same manner as unit "geometry". However, the last (or only) unit in a
help sequence is terminated by an -end- command. Upon completing the
last help unit, the student is returned to the "base" unit, the unit from
which the student branched (in this case unit "geometry"). The student

19

Bruce
Rectangle

Bruce
Rectangle

The TUTOR Language

20

need not complete the entire help sequence. He may press BACK or
shift-BACK to return to the base unit from any point in the help
sequence. Belp units for unit "geometry" could appear as follows:

* These units are help units for "geometry".
unit thelp1
at 1828
write The figure has three sides.
draw 510;1510;1540;510
*
unit
at
write
draw
*
unit
at
write
draw

~end

thelp2
1828
It also has three angles.
510;1510;1540;510

thelp3
1828
Note the right angle.
510;1510;1540;510

Any statement which begins with an asterisk (*) has no effect on the
operation of the lesson and may be used anywhere to insert comments
which describe the units. A comment statement between units improves
readability by guiding the eye to the unit subdivisions of the lesson.

The -back- statement permits the student to move to a different unit
by pressing the BACK key. Because of its name, it is customary to
associate a review sequence with the BACK key. If a student is in a
non-help unit that does not contain a -back- statement, the BACK key
does nothing. In a help-sequence unit that has no -back- statement, the
BACK key returns the student to the original base unit.

If the student calls the figure "a square", he or she will see this
response judged "no" and get the reply "Count the sides!" The
-nextnow- statement is llsed to force the student through additional
material. It locks the keyboard so that only the NEXT key has any effect.
In particular, the student cannot erase his or her response. When the
student presses NEXT, he or she will be sent to unit "treview". Upon

Bruce
Rectangle

completion of one or more units of review about triangles, the author
might return the student to unit "geometry". Thus, this student's lesson
flow might consist of:

1) a discussion of geometric figures;
2) a question about a right triangle;
3) an error causing -nextnow- to lock the keyboard;
4) further study of triangles; and finally
5) a return to the right triangle.

Consider now the problem of using unit "geometry" for a second
student response. Additional display information is needed to ask the
student a second question, and another -arrow- command is needed plus
a second set of response-handling statements. The unit could appear as
follows:

unit
next
back
help
at
write
draw
arrow

}
~endarrow

geometry
moregeom
intro
thelp1
1812
What is this figure?
510;1510;1540;510
2015

Response-handling statements
for first arrow.

~ at 2512
write

help
arrow

}

How many degrees in
a right angle?
angles
2815

Response-handling statements
for second arrow

The -endarrow- command delimits the response-handling statements
associated with the first -arrow-. Only when the first -arrow- is satisfied by
an "ok" judgment will TUTOR proceed past the -endarrow- command to
present the second question. The statement "help angles" overrides
the earlier statement "help thelp1". If the student presses the HELP

INTRODUCTION

21

Bruce
Rectangle

The TUTOR Language

22

key while working on the second -arrow- he or she will reach unit
"angles" rather than unit "thelpl".

The second question could have been given in a separate unit rather
than following an -endarrow- command. The major difference is that the
entire screen is normally erased as the student proceeds to a new unit,
whereas here the second question was merely added to the existing screen
display. Even if there is only one -arrow- command in a unit, -endarTOw­
can be useful, for it can be followed by display or other statements to be
performed only after the -arrow- is satisfied. This is particularly conve­
nient if there are several -answer- commands corresponding to several
different classes of acceptable responses.

Fourteen TUTOR commands have been illustrated in this chapter.
This repertoire is adequate to begin lesson writing. If you have access to a
PLATO terminal, it would be useful at this point to tryout the ideas
discussed so far.

Bruce
Rectangle

More on Creating
Displays

Particular attention should be paid to the question of how to display
text and line drawings to the student. Good or poor displays of material in
a lesson can make the difference between a successful or unsuccessful
lesson. Imaginative use of graphics, including animations (moving
displays), will capture the attention of the student and transmit your
message much more efficiently than would mere text. You have already
seen how to write text and draw figures by using the -at-, -write-, and
-draw- commands. This chapter will discuss how to achieve finer control
over screen positions, how to draw circles and circular arcs, how to
display large-size text and write at an angle, and how to erase portions of
the screen. The ability to erase a portion of the screen makes it possible to
create animated displays.

Coarse Grid and Fine Grid

It is convenient to specify a line number and character position for
displaying text. We have seen that the TUTOR statement "at 1812"
instructs PLATO to display information starting on the 18th line at the
12th character position. Line 1 is at the top of the screen and line 32 is at
the bottom. Each line has room for 64 characters, with character position
01 at the left and character position 64 at the right. This numbering
scheme is called the "coarse grid" or "gross grid".

2

23

Bruce
Rectangle

Bruce
Rectangle

The TUTOR Language

24

Sometimes it is necessary to position text or draw a figure with finer
control than is permitted by the coarse grid. The PLATO screen consists
of a grid of 512 by 512 dots, and the position of any of these quarter­
million dots can be specified by giving two numbers-the number of dots
from the left edge of the screen (often called "x") and the number of dots
up from the bottom of the screen (often called "y"):

5 ..

~5'

35.

3 ..

25.

Fine-&;rid
2 ..

position

15. 1+-____ --"-X--=.~38~~ ____ ~38~. 128

I ..

5.
>' • 128

• ~~-~-+--~-+-~-~~-~-~
• 5. I.. 15. 2.. 25. 306 35. ~.. ~5' 5 ••

Fig. 2-1.

The position shown would be referred to as the "fine grid" location
"384,128" in an -at- or -draw- statement. This position is equivalent to the
coarse grid location 2449 (line 24, character position 49). As an example,
consider the following unit:

unit
at
write
at
write

double
384,128
DOUBLE WRITING
385,129
DOUBLE WRITING

This unit would write "DOUBLE WRITING" twice, displaced horizon­
tally and vertically by one dot, which looks like this:

Bruce
Rectangle

Bruce
Rectangle

MORE ON CREATING DISPLAYS

Fig. 2-2. (Greatly enlarged.)

The -draw- command permits mixing the two numbering schemes:

draw 1215; 1225;120,240; 1855

This means "draw a straight line from 1215 to 1225, draw a second
straight line from there to (120,240), then draw a third straight line from
there to 1855". Note that each point, whether expressed in coarse grid or
fine grid, must be set off by a semicolon.

The -box-, -vector-, and -circle- Commands

I at 2551
\ CIrcle, 64.".271

"
Fig. 2-3.

Figure 2-3 illustrates how rectangular boxes are often drawn as part of a
display. Although such boxes can be drawn using the -draw- command, it
is even more convenient to use a -box- command, since you merely give
two corners of the box. For example:

25

The TUTOR Language

26

box 1215;1835

is exactly equivalent to;

draw 1215;1235;1835;1815;1215

Fine grid coordinates can also be used for the corners of the box. The
sides of the box can be made thicker for additional emphasis. For
example, "box 1215;1835;2" will draw a box with sides two dots thick.

Another frequently drawn object is a "vector"-a line with an
arrowhead used to point out something on the screen. The statement
"vector 512;920" will draw a line from 512 to 920, with an arrowhead
added at the 920 end. Fine grid coordinates can be used. The size of the
arrowhead in relation to the line can be controlled by adding another
number. For example, "vector 512;120;6" will show an arrowhead
about half as large as normal. Making the arrowhead size negative draws
an "open" rather than a "closed" arrowhead.

Circles are drawn by specifying a center with an -at- command, then
using a -circle- command to specify the radius (as a number of dots);

at 1215
circle 50
circle 75

This will draw two circles whose radii are 50 dots and 75 dots long,
centered at screen location 1215. Notice that the screen position is
restored to the center of the circle after drawing a complete circle.

A portion or arc of a circle can be drawn by specifying starting and
ending angles, as in "circle 125,0,45", which will draw a 45-degree
circular arc, starting at 0 degrees (0 is "east" or "horizontally to the right";
and 360 degrees is again "east"). After drawing an arc, the screen position
is left at the end of the arc rather than at the center of the circle.

The -circleb- command is just like -circle-, but it draws a broken or
dashed circle or circular arc.

The basic line-drawing commands (-draw-, -box-, -vector-, and
-circle-) are used together to build complicated drawings.

Large-size Writing: -size- and -rotate-

It is possible to display text in larger than normal size, and even write
at an angle. This is particularly useful in showing an eye-catching title on
a page. Here is a sample display with the corresponding TUTOR
statements. The "$$" permits a comment to appear after a tag.

Bruce
Rectangle

MORE ON CREATING DISPLAYS

unit title
size 9.5 $$ text 9.5 times normal size
rotate 45 $$ text rotated 45 degrees
at 2519
write Latin
size 0 $$ return to normal writing
rotate 0

Le~:5on on Verb~ at 3125
write Lesson on Verbs

Fig. 2-4.

For technical reasons the large-size writing comes on the screen much
more slowly than does normal text, but the speed is adequate for short
titles. Use "size 0" to return to normal writing. Normal writing is
unaffected by -rotate-. However, you may use "size 1" if you wish to
rotate standard size text. Size 1 writing appears at the same slow speed as
larger writing (about 6 characters per second, or 60 words per minute).
Only size 0 writing is rapid (180 characters per second, or 1800 words per
minute).

BE SURE TO RETURN TO SIZE 0!! If you forget to place a
"size 0" statement after the completion of the. special writing, all of
your text will be written slowly (and possibly rotated). It is also good
practice to say "rotate 0", so that the next time you use "size" the rotation
will be through 0 degrees unless stated otherwise.

You can magnify the width of the characters differently from the
height. For example, "size 2,5" will make the characters twice as wide
and five times as high as they are normally.

Because "sized" writing is slow, it should be used only for special
effects. It should be avoided on pages which are seen repeatedly, such as
a table of contents for a lesson, because the student will be irritated by the
enforced wait. In such cases, it is better to achieve emphasis by other,
faster techniques, such as drawing a box around a heading written in
"size 0".

27

Bruce
Rectangle

The TUTOR Language

28

Animations (Moving Displays): -erase- and -pause-

An animated display can be created by repetitively displaying some
text, pausing, erasing the text and rewriting it in a new position on the
screen. Here is a unit which will show two balloons floating upwards.
The unit is split in order to show the changes in the display. (See Figures
2-5a through 2-5c.)

00

unit
at
write
at
write

~pause

'-.i.!S at
r:::::s= erase
'-.i.!S at

write
pause

Wo.tch the balloons .0 up!

Fig. 2-5a.

balloons
3020
Watch the balloons go up!
250,100
00
1.5
250,100

$$ use 00 for balloons
$$ suspend processing for 1.5 seconds

2 $$ erase two characters
250,150 $$ reposition 50 dots higher
00
1.5

00

Wo.tch the be.lloone fiO up!

Fig. 2-5b.

MORE ON CREATING DISPLAYS

at 250,150
erase 2
at 250,200
write 00
pause 1.5

00

Wo.teh the balloons .0 I,Ip!

Fig. 2-5c.

The statement "erase 2" selectively erases two character positions
without disturbing the rest of the screen. In particular, the text "Watch
the balloons go up!" will stay on the screen.

There are other forms of the -erase- command. The statement
erase 12,3" will selectively erase a block of 12 character positions on

three consecutive coarse grid lines. The statement "erase" with no tag
will erase the entire screen instantaneously. The same full-screen erase
normally takes place automatically upon moving to a new main unit.

-pause-, -time-, and -catchup-

The -pause- statement with a tag in seconds suspends processing for
the specified amount of time. If the tag is omitted, TUTOR waits for the

29

Bruce
Rectangle

Bruce
Rectangle

The TUTOR Language

30

student to strike a key, any key, rather than wait a specified amount of
time. This form is particularly suitable in more complicated situations
where the student may want to study each step before proceeding. Here is
an example:

The:r~ ar~ ~e:vera t k 1 nds
of -er.sse- commands
for s<e:lect Lve and full
eraslni of the screen.

unit discuss
at 520
write There are several kinds

of -erase- commands
for selective and full
erasing of the screen.

~pause

~ at 1520
write "erase 5" will erase

5 spaces. "erase 25,4"
will erase 25 spaces
on 4 lines.

pause
at 2520
write An -erase- command

with a blank tag
will erase the whole

Fig. 2-6a. screen.

There are ~<e:v4tr.l k i nda
or ~era~<e:- COII'IIWIInda
tor ~lecti.ve and full
era8iTlll or the l screen.

·era~ 5- will erase
5 spaC<I!!:s. -erase 25,"-
wi 11 era!M!! 25 space
on .. 1 ines.

Fig. 2-6b.

MORE ON CREATING DISPLAYS

There- are ~f!vera 1 k 1 nde
or -ereee- ~OfMIand=
for ~lcctive and full
eraelni of the, =cr~Tl.

era~e: 5" wl11 era~e:

5 space~. .. era~e z S
~ 1 II era~e Z S epace:l
on .. Ilne~.

An -eraee- ~OffiI'I'I4nd

with IS blank taa
will era~e the: whole
Scrof!4!fl.

Fig. 2-6c.

Each time the student presses a kcy to move past the -pause- command,
more text is added to the screen. This prevents the student from feeling
overwhelmed by too much text all at once. Each new paragraph is added
only when the student signals by pressing a key that he or she wants to go
on. On the other hand, this structure leaves the earlier paragraphs on the
screen so that the student can look back to review. If the -pause­
commands were replaced by -unit- commands, each paragraph would
reside in a separate main unit. When the student presses NEXT to move
on to the next main unit, the screen is completely erased to make room for
the next display. This would accomplish the objective of letting the
stndent control the rate of presentation of new material but would not
leave the earlier paragraphs on the screen for review and comparison.

It is inadvisable in this application to use "pause 15" rather than
"pause", since the student would have no control over the presentation
rate. Any time delay you choose will be too fast for some students and too
slow for others. A timed -pausc- is mainly useful for animations.
Sometimes it is appropriate to move on after a long time if the student
hasn't pressed a key. This can be achieved with a -time- command:

time 30
pause

31

Bruce
Rectangle

The TUTOR Language

32

The "time 30" statement will "press the time up key" after 30 seconds,
so that if the student does not press a key, TUTOR will. The student can
move on sooner by pressing a key before then. However, this is not
possible if you use "pause 30".

To summarize, there are three types of -pause- situations:

1) pause n paus~ n seconds whether
keys are pressed or not

2) pause

3) time
pause

wait for any key

n } wait for any key or n seconds

Occasionally, you might want to send several seconds worth of
output to the student's screen, then pause two seconds, then add
something else. If you write several seconds of display including
text and drawings which take several seconds to paint on the screen,
followed by:

pause 2
write More text. ...

you will not get the desired effect because TUTOR will add "More
text ... " right after the initial material headed toward the terminal (since
the "pause 2" ends before the initial display is finished). The student
will see no gap between the first and second parts of the display. The
problem can be solved with a -catchup- command:

catchup
pause
write

2
More text. ...

The -catchup- command tells TUTOR to let the terminal "catch up" on
its work up to that point before continuing. Then you pause an additional
two seconds, and you get the desired effect.

Bruce
Rectangle

Bruce
Rectangle

MORE ON CREATING DISPLAYS

The -mode- Command

The -erase- command may be used to erase blocks of character
positions or the whole screen. However, something else is needed for
selectively erasing line drawings created with -draw- and -circIe- state­
ments. The PLATO terminal can be placed in an erasure mode in which
the terminal interprets all display instructions as requests to erase rather
than to light up the corresponding screen dots. This is done with the
-mode- command:

unit
at
write
draw
pause

modes
2517
Selective erase of a figure
1210;2010;2050;1210 $$ triangle

$$ wait for a key
~mode
~ draw

mode
at
write

erase
1210;2010;2050
write

$$ part of the triangle

510
One line left.

Onti! line left.

Sel~ctlye era~e Cif ~ fli:Ure ~le<::tive ero.ee of a fiaure

Fig. 2-7a. Fig. 2-7b.

33

Bruce
Rectangle

The TUTOR Language

34

The "write" mode is the normal display mode. Be sure to specify
"mode write" when you are through with "mode erase", or all further
writing in that unit will be invisible!

In the standard mode ("write") it is possible to superimpose or
overstrike text with another -write- statement. If, however, a "mode re­
write" statement is executed, the second -write- statement will erase the
previous text as it writes the new text, and there will be no superposition.
Compare these sequences in write and rewrite modes:

mode write mode rewrite
at 1215 at 1215
write ABC write ABC
at 1215 at 1215
write abc write abc

! write mode ! rewrite mode

IJfilC abc
(superimposed) (not superimposed)

In the rewrite case the second -write- statement wipes out the 3-character
area as it writes the new information. Each character area is 8 dots wide
by 16 dots high. This determines the number of rows and columns in
coarse grid. In the coarse grid, (512/8)=64 characters fit across the screen,
and (512/16)=32 lines of characters fill the screen vertically.

The statement "erase 2" is actually equivalent to:

mode rewrite
write (two spaces)
mode (previous mode)

Writing spaces (blank characters) in rewrite mode wipes out an entire
character area.

The balloon animation in Figures 2-5a through 2-5c could have been
written:

at 250,100
write 00
pause 1.5
mode erase
at 250,100

Bruce
Rectangle

MORE ON CREATING DISPLAYS

write 00
mode write

$$ instead of "erase 2"

This form would be different from the form using "erase 2" if there
were other screen dots lit in this area. The form which uses "erase 2"
completely erases two character positions while "write 00" in the erase
mode erases only the dots that make up the letters "00" without
disturbing neighboring dots.

Automated Display Generation

It should be mentioned that an author working at a PLATO terminal
can use a moving cursor to design a display involving text, line figures,
circles and arcs. The PLATO system then automatically creates corre­
sponding TUTOR statements which would produce that display. The
author can alter these statements, convert them back into a display, and
add to or alter the resulting display. This facility makes it unnecessary in
most cases to worry about the details of screen positions. Here is an
example of. such operations:

Fig. 2-8. Move the cursor (the "-t-") to
draw the road and to mark the ends of the
tree trunk.

Fig. 2-9. Draw the tree trunk.

35

The TUTOR Language

I J:

(16J3,112) '" 2521 DPAW m-:.,de
GR0'C;c, GRID (HELP)

Fig. 2-10. Specify a circle for the top of the
tree. Draw the house. Place text of various
kinds on the screen. (The car uses special
characters.)

36

unit dIsplay
draw 1812; 185Z;sklp; le",~; 154.04
at 344.288

·:ir-aw 1837; 1637; 1535; 1633; 1833
a-+:: 1.04,225

wrlt<! ~)

at :"0'2 I

wrlt~ Al..lt')l1lai:e.j dI5p13y-rnaXltle:'
Slze 3
rc)i:ate - HJ
at 2521

",J!'" 1 t e Lo·:,K'

! .-:,telte "

Fig. 2-11. PLATO automatically generates
TUTOR statements corresponding to the
desired display.

Bruce
Rectangle

Automated display-makln~1

(272,296) • 1335 DRAW mode
Fn£ GRID (HELP)

Fig. 2-12. Recall the display and add a flag
to the house. unit

draw
at
Circle
dr'a,w
at
wrIte
at

MORE ON CREATING DISPLAYS

dIsplay
1812; 1852';~klPj 18<4"'; 15
3 4 l88

,6
1637:1637;1535;1633j1831

1&4, Z2S

c>~
ZJJ21

write Aut<..>rnated dlsplay-maklnli
3

rotate - 38
et ;:>521
"",rite Look. I

~12e

rotate
draw 1515:1335:1333;2'56,296;272,296

Fig. 2-13. PLATO appends a -draw-state­
ment corresponding to the flag.

37

The TUTOR Language

38

Fig. 2-14. Final result. The illustrations in this book were
created by these techniques. The screen displays were
photographed.

Bruce
Rectangle

Building Your Own
Tools:
The-do-Command

You now know enough about presenting material to the student to be
able to make attractive displays. You will be able to do even more when
you learn how to tell PLATO to calculate complicated displays for you.
Before discussing how to do calculations we will pause to introduce an
extremely important concept, the "!>ubroutine", which is fundamental to
all aspects of authoring. We will start off by applying the concept of a
subroutine to certain display problems.

To introduce the use of subroutines, consider the problem of placing
some standard message on several of your main lesson pages. For
example, in the many units where you make help available to the student
(if he presses the HELP key) you might like to advertise this fact by
placing this display at the bottom of the page:

HELP is available

The corresponding TUTOR statements might be:

at 3123
write HELP is available
box 3022;3141

It would be tedious to copy these statements into every unit where they
were required. Moreover, if you decided later to move this to the upper
right corner of the screen, you would have to find all occurrences of this
and change all of them. There is a way around these difficulties, and in

3

39

The TUTOR Language

40

later work we will find further important advantages to the method.
Suppose we write a "subroutine" (a unit to be used many times as
needed):

unit
at
write
box

helper
3123
HELP is available
3022;3141

Where we need to show this message, we need only write the statement:

do helper

This statement attaches unit "helper" to the present unit. It is as though
we had inserted the contents of unit "helper" at the point where we say
"do helper". Now, instead of a dozen copies of the display statements we
have only one, plus a dozen -do- commands. The -do- command may
appear anywhere in a unit. The location of each -do- command will
determine when the associated display appears on the screen in relation
to your existing display material. All these displays may be changed by
simply changing the subroutine unit! You do not need to change the -do­
statements, instead change unit "helper" which they all use.

The use of -do- improves the readability of a TUTOR lesson. When
you see "do helper" anywhere in your lesson you recognize at a glance
what it is for. The contents of unit "helper" might contain a large number
of statements which would clutter up your other units, and decrease
readability, if these statements appeared directly in each unit.

Let's consider another use. Suppose we wish to draw a "Cheshire
cat" which fades to a smile as Alice watches. We want to draw a cat face
made up of the smile plus all the rest of the face, then erase everything
but the smile. Here is an effective way of doing it. (See Figures 3-1a and
3-1b.)

unit Alice
at 512
write Watch the Cheshire cat!
do cat
catchup $$ wait for cat to be drawn
pause 4 $$ then pause 4 seconds
mode erase
do face
mode write
at 3012
write See the smile?

Bruce
Rectangle

BUILDING YOUR OWN TOOLS: THE-DO-COMMAND

Watch the Chc5h)re cat! Wotch the Che~hi re cat!

00

See the ~11e?

Fig. 3-1a. Fig. 3-1b.

We will need some units to use as the subroutines:

unit cat
do face
do smile
*
unit face
at 250,250
circle 120 $$ outline
at 200,280
circle 30 $$ eye
at 300,280
circle 30 $$ eye
*
unit smile
at 250,250
circle 80,225,315 $$ smile-arc goes from 2250 to 3150

Note that unit "Alice" does unit "cat", which in turn does units "face"
and "smile". TUTOR permits you to go ten levels deep in -do-so Here we
have gone only two levels deep. Note that unit "smile", on its own, is a
useful subroutine and might be done whenever just the smile is desired.

41

The TUTOR Language

42

To summarize, we can build useful tools by constructing "subrou­
tines" (units which may be done from many places in the lesson). The
liberal use of -do- improves readability, reduces typing, and facilitates
revising the lesson. This last point is particularly important when there is
a "bug" (unknown error) in the lesson. Debugging becomes much
simpler because of the modular nature of subroutines, and because a
lesson which uses -do- extensively has its critical control points well
localized.

Doing Calculations
in TUTOR

You can make TUTOR calculate things for you. For example:

at 1201
write Who is buried

in Grant's tomb?
arrow 1201 +308

The -arrow- statement, as written, is completely equivalent to
"arrow 1509". Or consider this:

The radius of the circle will be taken to be the square root of the sum
of 41 squared and 72.6 squared.

Just about any expression that would have made sense to your high
school algebra teacher will be understood and correctly evaluated. For
example:

4

43

The TUTOR Language

44

Expression
3.4+5(2L 3)/2
2x3+B
sin(30°)
491/ 2

(4+7)(3+6)
6/5x 10-3

TUTOR Evaluation
15.9
14 (NOT 22)
0.5 (See Appendix C for other functions.)
7
99
1200 (NOT 1.2x10-3)

If your high school algebra is rusty, we remind you that "2x5+3"
means "(2x5)+3" which is 13, not "2x(5+3)" which is 16. The rule is
that multiplication is "more important" than addition or subtraction and
gets done first. If you are unsure at some point, you may use parentheses
around several portions of your expression to make the meaning unam­
biguous.

A similar point holds true for division, which is considered "more
important" than addition or subtraction. "8+6/2" means "8+(6/2)"
which is 11, not "(8+6)/2" which would be 7. The only ticklish point is
whether multiplication is more or less "important" than division.
TUTOR agrees with most mathematical books and journals that multipli­
cation is more important than division, so that "6x4/3x2" means
"(6x4)/(3x2)" which is 4. Note that this means that TUTOR considers
"1/2(6+4)" to be "1/(2(6+4))" which is 0.05, not "(1/2)(6+4)" which
would be 5. Again, when in doubt use parentheses. You could write
".5(6+4)" if you wish, which is unambiguous.

Experience has shown that students tend to write algebraic responses
according to these rules, and making TUTOR conform to these rules
facilitates the correct judging of student algebraic and numerical re­
sponses.

Having seen how expressions are handled, we can introduce "stu­
dent variables" which may be used to hold numerical values obtained by
evaluating expressions. These stored results can be used later in the
lesson. As an example, a "variable" might hold the student's score on a
diagnostic quiz, and this score could be used later to determine how
much drill to give the student. The storage place is called a "variable"
because what it holds may vary at different times in the lesson. Another
variable might count the number of times the student has requested help,
in which case the number which it holds would vary from 0 to 1 to 2, etc.

There are 150 "student variables" which can be used for storing up
to 150 numerical values. These "student variables" are unimaginatively
called:

v1,v2,v3, ... v148,v149,v150.

Bruce
Rectangle

DOING CALCULATIONS IN TUTOR

Later in this section we will learn how to give variables names (such
as "radius," "wrongs," "tries," "speed," etc.) which are appropriate to
their particular usage in a specific lesson. But first, we will look at
variables using their primitive names: vI through vI50.

These variables are called student variables because each of the
many students who may simultaneously be studying your lesson has his
or her own private set of 150 variables. You might use variable v23 to
count the number of correct responses on a certain topic, which will be
different for each student. If there are forty students working on your
lesson, TUTOR is keeping track of forty different "v23's", each one
different. This is done automatically for you, so that you can write the
lesson with one individual student in mind, and v23 may be considered
simply as containing that individual student's count of correct responses.
Thus, one student might be sent to a remedial unit because the contents
of his variable number 23 show that he did poorly on this topic. Another
student might be pushed ahead because the contents of her variable 23
indicate an excellent grasp of the material. It is through manipulation of
the student variables that a lesson can be highly individualized for each
student.

Variables arc useful in building certain kinds of displays. Let's see
how to build a subroutine which can draw a half-circle in various sizes,
depending on variables which we set up. In order to specify the size of
the figure and its location on the screen, we must specify a center (x and y)
and a radius. We let variables vIand v2 hold the horizontal x and vertical
y positions of the center, and we let variable v3 hold the value for the
radius.

~ at x,v (at v1,v2)
circle radius,0,180 circle v3,0,180

draw x-radius,v;x+radius,v
(draw v1-v3, v2;v1 +v3 ,v2)

t
(x- radius,V) (x,V) (x+ radius,V)

(v1-v3 ,v2) (v1,v2) (v1 +v3 ,v2)

Fig. 4-1.

We can draw such a figure with the following unit:

45

Bruce
Rectangle

Bruce
Rectangle

The TUTOR Language

46

unit halfcirc
at v1,v2
circle v3,0,180 $$ 180 degree arc
draw v1-v3,v2;v1 +v3,v2 $$ horizontal line

In ordcr to usc this subroutine we might write:

unit vary
calc v1¢:150 $$ x center at 150
calc v2¢:300 $$ y center at 300
calc v3¢:100 $$ radius 100
do halfcirc
calc v1¢:v1 +v3 $$ increment x center
do halfcirc $$ y and radius unchanged

The statement "calc v2<=150" means "perform a calculation to put
the number 150 in variable v2". The statement "calc vl¢:vl+v3" means
"calculate the sum of the numbers presently held in variables vIand v3,
and put the result in variable v I". In the present case, this operation will
store the number 250 (1.50+] 00) in variable vI for usc in thc second
"do halfcirc". Note that the second "do halfcirc" will usc the original
values of v2 and v3, which have not been changed. This unit will produce
this picture:

Fig. 4-2.

Bruce
Rectangle

Bruce
Rectangle

DOING CALCULATIONS IN TUTOR

The ¢' symbol is called the "assignment" symbol, because it assigns a
numerical value to the variable on its left. This numerical value is
obtained by evaluating the expression to the right of the assignment
symbol.

A slightly more complicated example of a -calc- statement is:

calc v3¢'5v2+v1

This statement means "multiply by 5 the number currently held in v2,
add this to the number held in vI, and store the result in v3." In
conversation you might read this as "calc v3 assigned five v2 plus v 1" or
"calc v3 becomes five v2 plus vI". Notice that it is common practice to
refer simply to "v2" when we really mean "the number currently held in
variable v2".

The simplest possible -calc- statement merely assigns a number to a
variable, as in "calc v2¢'150". It is permissible to make more than one
assignment in a -calc- statement:

calc v3¢'v7¢'18.62

This will assign the value 18.62 to both variables v3 and v7.

Giving Names to Variables: -define-

Your programming can be made much more readable by "defining"
suitable names for the student variables which you use. For example, in
the units just discussed, the quantities of interest were the center (x and y)
and radius of the circular arc. We should precede such units with a
-define- statement:

~define

unit
calc

do

x=v1,y=v2
radius=v3
vary
x¢'150
y¢'300
radius¢::100
halfcirc

calc x¢'x+radius
do halfcirc
*

halfcirc
x,y
radius,0,180

$$ names may be 7 characters long

$$ The command name -calc- may be
$$ omitted on successive lines

unit
at
circle
draw x- radius, y;x + radius,y

47

Bruce
Rectangle

Bruce
Rectangle

The TUTOR Language

48

The -define- statement tells TUTOR how to interpret the defined
names when they are encountered later in expressions. The units are now
much more readable than they were when we used vI, v2, and v3.

Giving meaningful names to the variables you use is very important.
After an absence of several months, you would have difficulty in
remembering what you are keeping in, say, variable v26, whereas the
name "tries" would remind you immediately that this variable holds a
count of the number of times the student has tried to answer the question.
The importance of readability is even more vital if a colleague is working
with you on the material. Your associate would find it extremely frustrat­
ing to try to figure out what you are keeping in v26. So, use -define-!

There should not be any 03's or 026's anywhere in your lesson except
in the -define- statement itself. Put all your definitions at the vcry
beginning of thc lesson where you will have ready reference to the
variables you are using.

The only reason we started out using the primitive v-names was to
establish a more concrete feeling for the meaning of a student variable.
From here on we will use defined variable names. A preceding -definc­
statement is assumed.

WARNING: Normal algebraic notation permits expressions such as
"rcose", but in TUTOR you must write "rX cos(e)" or "r(cos(e))". That is,
you must use an explicit multiplication sign between names (either your
defined names such as "r" or TUTOR-defined names such as "cos"), and
you must place parentheses around the arguments of functions. For
example, the "e" in cos (e) must be enclosed in parentheses.

The reason for this is that TUTOR cannot cope with the ambiguities of
trying to decide whether an expression such as "abc" means "axbc" (if
there is a name "bc"), or "abxc" (if there is a name "ab"), etc. Later,
when we discuss the important topic of judging student responses, we
will see that TUTOR can make reasonable guesses when treating a
student's algebraic response and can permit the student the luxury of
leaving out multiplication signs and omitting parentheses around func­
tion arguments. You, the author, are required to be more explicit,
however, in separating one name from another. Notice that "I7angle" is
fine and TUTOR will recognize this as meaning "I7xangle". But
"rangle" can't be pulled apart into "(r)(angle)" because you might have
meant "(ran)(gle)".

Bruce
Rectangle

DOING CALCULATIONS IN TUTOR

Repeated Operations: The Iterative -do-

With very little effort we can make a variety of designs out of our unit
"halfcirc". For example:

We ueed. .an

unit
calc

stack
x<:=:256

~do
~ at

radius<:=:70
halfcirc,y<:=:100,380,70
312

Fig. 4-3.

write We used an
iterative -do-.

The effect of the -do- statement is to set y to 100 and do unit
"halfcirc", then set y to 170 (the starting value of 100 plus an increment
of 70) and do halfcirc again, and repeat the process until y reaches the
final value of 380. The format of the extremely useful iterative -do­
statement is:

do unitname,index<:=:start,end,increment

In the above example, the index "y" starts at 100 and goes to 380 in
increments of 70. If no increment is specified, an increment of one is
assumed. For example, "do halfcirc, radius<:=:101,105" will make an arc
five dots wide, as in the following figure:

Fig. 4-4.

49

The TUTOR Language

50

The iterative -do- statement also helps in making animations. The
following statements will cause the half-circle to move horizontally
across the screen. (See Figures 4-5a and 4-5b.)

unit march
at 3120
write Move figure left to right.
calc y¢:280

radius¢:75
do anim,x¢:100,350,50
do halfcirc $$ draw final figure
at 3220
write All done.
*
unit anim
do halfcirc $$ draw figure
catchup $$ wait for it to finish
pause 1 $$ pause an additional second
mode erase
do halfcirc $$ erase the figure
mode write

Move fiaure left to riaht.

Fig. 4-5a. Fig. 4-5b.

Bruce
Rectangle

Bruce
Rectangle

DOING CALCULATIONS IN TUTOR

We simply -do- unit "anim" repeatedly for different values of x (the
horizontal position of the figure on the screen). Unit "anim" does unit
"halfcirc" twice, once to draw and once to erase the figure interrupted by
a one-second pause. The -catchup- command insures that a second will
elapse from the end of drawing the figure on the screen until the
beginning of erasing it.

Now that you have studied -dcfinc-, -calc-, and -do-, you have learned
the basic techniques of how to tell PLATO what calculations you want
performed. We have applied these tools to a variety of display generation
problems, and we will later use calculations for controlling sequencing in
a lesson and for judging responses. Hopefully, you have gained added
insight into the value of a subroutine. Notice how many different ways
we have used the single unit "halfcirc"!

Showing the Value of a Variable

We have learned how to calculate and how to store results in
variables. How do we show these results on the screen? Suppose we
perform this calculation:

calc y¢'5sqrt(37) $$ or, y¢'5x37 Y2 ; "sqrt" means square root

How do we later show the value of y? Assume we have defined y. Perhaps
we could use this:

write y

No, that won't work; that will just put the letter "y" on the screen. The
-write- command is basically a device for displaying non-varying text, not
for showing the value contained in a variable. We need another com­
mand:

show y

This will show the value of y in an appropriate format (-show- picks
an appropriate number of significant figures and will use a scientific
format such as 6.7x 1013, if the number is large enough to require it). By
using -show- instead of -write-, you tell TUTOR that you want the stored
value to be shown rather than just the characters in the tag.

51

Bruce
Rectangle

The TUTOR Language

52

The -show- command will normally choose 4 significant figures, so
that a typical display might be "-23.47". You can specify a different
value by giving a second "argument" (arguments are the individual
pieces of the tag of a statement):

show V,a $$ a significant figures

The arguments of the -show- command can, of course, be complicat­
ed expressions:

show 10+30cos(2angle),format+2

In fact, it is a general rule that you can use complicated expres­
sions anywhere in TUTOR statements. For example, "draw 5rad
+225,34L;123-L2,28L"1

Here is a short program which uses -show- to display a table (see
Figure 4-6) of square roots of the integers from 1 to 15:

define N=v1
unit roots
at 310 $$ write titles for the two columns
write N
at 325
write Nih
do root,N<:=1,15 N Nl / 2

*
unit root
at 410+100N
show N
at 425+100N
show sqrt(N)

1
2 1 1 ...
3 1.732
... 2
5 2.236
6 2 9
7 2.6"'6
6 2.626
9 3
1.0' 3. 162
11 3.317
12 3 6 ...
13 3.6.0'6
1 ... 3.7"'2
15 3.673

Fig. 4-6.

Bruce
Rectangle

DOING CALCULATIONS IN TUTOR

The last statement could also be written as "show N h ". This
technique of making tables, including the use of the -do- index (N) to
position the displays (as in "at 425+ 100N") is an important and
powerful tool.

There are other commands for displaying variables: -showe- (expo­
nential), -showt- (tabular), -showa- (alphanumeric), -showo- (octal), and
-showz- (show trailing zeroes). These are described in detail in the
reference material mentioned in Appendix A.

Although -write- is basically designed for non-variable text, combi­
nations of text and variables occur so often that TUTOR makes it easy to
"embed" a -show- command within a -write-:

write The area was <ts,13.7w,6» square miles.

The embedded "s" indicates a -show- command and the remainder
"13.7w,6" is its tag. Other permissible abbreviations include "0"

(showo), "a" (showa), "e" (showe), "t" (showt) and "z" (showz). The
above -write- statement is equivalent to:

write The area was
show 13.7w,6
write square miles.

Passing Arguments to Subroutines

When you write "show 13.7w,6", you are passing two pieces of
information to the -show- command. You are giving two numerical
"arguments" (13.7w and 6) to the TUTOR machinery that performs the
-show- operations. Similarly, we created a half-circular arc with
"circle radius,0,180" in which we passed three arguments to the
TUTOR circle-making machinery. Sometimes certain arguments are
optional. For example, "show 13.7w" will use a default second argu­
ment of 4 (significant figures), and omitting the last two arguments in a
-circle- command ("circle radius") will cause a full circle to be drawn
rather than an arc. When we pass onc argument to the -at- command
("at 1215"), we mean coarse grid; when we pass two arguments
("at 125,375"), we mean fine grid.

This notion of passing arguments to TUTOR commands, with some
arguments optional, also applies to your own subroutines, such as unit
"halfcirc". The "halfcirc" subroutine needs three arguments (x, y, and
radius) to do its job. We passed these arguments by assigning values to
variables and letting "halfcirc" pick up those values and use them:

53

Bruce
Rectangle

The TUTOR Language

54

define x =v1 ,y=v2,radius =v3
unit vary
calc x¢=150

y<:c300
radius¢=100

do halfcirc
calc radius<:=50
do halfcirc
*
unit halfcirc
at x,y
circle radius,0,180
draw x-radius,y;x+radius,y

Notice that the second -do- will use the original "x" and "y", since these
variables have not been changed. It is as though we passed only one
argument ("radius") to the subroutine.

TUTOR permits another way of writing this sequence which looks
similar to the way one passes arguments to the "built-in subroutines"
(-show-, -circle-, -at-, etc.):

define x=v1,y=v2,radius=v3
unit

~~~ 
* 

vary 
halfcirc(150,300,100) 
halfcirc(50) 

unit halfcirc(x,y,radius) 
at x,y 
circle radius,0,180 
draw x-radius,y;x+radius,y 

The statement "unit halfcirc(x,y,radius)" tells TUTOR that when this 
unit is done as a subroutine, arguments are to be passed to it. The 
statement "do halfcirc(150,300,100)" tells TUTOR to pass the listed 
arguments to the "halfcirc" subroutine for its use. The arguments are 
passed in the order listed: 

do halfCirCITff0) IPass 3 Arguments) 

unit halfcirc(x,y,radius) 

Bruce
Rectangle



DOING CALCULATIONS IN TUTOR 

These variables are now set for use in the subroutine. It is precisely as 
though we had assigned values to "x", "y", and "radius" by using -calc-. 
If some arguments are omitted, these variables are not transferred: 

do ha'fcirCTS"7
2 

(Pass 2 Arguments) 

unit halfcirc(x,y,radius) 

In this case the variable "y" has not been assigned a new value, so it 
retains the value it had, which was 300. (The value of "y" could have 
changed if "halfcirc" itself altered it. For example, if we append 
"calc y<:=75" to the end of unit "halfcirc", "y" would now be 75, 
although it was originally passed the value of 300 by the first -do­
statement during the making of the first display.) 

Arguments to be passed need not be simple numbers. Each argument 
can be a complicated expression. The expressions are evaluated, then 
passed in order: 

do 

unit 

ha~CirC(rdius.~2s,r:dius+ :SY,200+Y) 

halfcirc(x,y,radius) 

It is as though we had written: 

calc arg1<:=3.4radius-25 
arg2<:=radius+25y 
arg3<:=200+y 
x<:=arg1 
y<:=arg2 
radius<:=arg3 

Just as the -at- command handles its arguments differently depend­
ing on the number of arguments (one for coarse grid and two for fine 
grid), so it is possible for your subroutines to do such things. There is a 
TUTOR-defined "system variable" named "args" which always contains 
the number of arguments passed the last time a subroutine was done. By 
"system variable" we mean a variable separate from the student variables 

55 

Bruce
Rectangle



The TUTOR Language 

56 

(v 1 through v 150) whose contents are assigned by TUTOR rather than by 
you. You do not define system variables; they are already defined for you. 
(Indeed, if you say "define args=v3", you will override TUTOR's 
definition of the meaning of "args", so that "args" will mean "v3" rather 
than "the number of arguments passed to a subroutine".) In Chapter 6 
(Conditional Commands) you will see how you could do a variety of 
things in a subroutine (conditional on the value of "args") which are 
similar to the kinds of things the -at- command does. 

Our subroutine "halfcirc" uses three student variables: vI, v2, and 
v3, defined as "x", "y", and "radius". Another subroutine could use the 
same variables for carrying out its work, but it must be kept in mind that 
-do-ing this subroutine will affect vI, v2, and v3, since arguments will be 
passed. 

Suppose one subroutine uses another, with "nested" -do-s like this: 

do A(5) 1 PASS 

unit A(v11 ) $$ v11¢5 
do B(3+v11 ) 
calc v11¢10v11 $$ v11¢50 

PASS 

unit B(v25) $$ v25¢8 

Variable v11 ends up with the value 50. It is advisable to use different 
variables in the two subroutines. Here unit A uses v 11 and unit Buses 
v25. It can lead to confusion or even logical errors if B also uses vII to do 
its work, since -dci-ing B will affect the value of vII used by A. Here is the 
structure to be avoided: 

do A(5) 

1 PASS 

unit A(v11 ) $$ v11¢5 

Bruce
Rectangle

Bruce
Rectangle



DOING CALCULATIONS IN TUTOR 

do B(3+v11) 
calc v11¢=10v11 $$ v11¢=80 

PASS 

unit B(v11) 

Now variable v II ends up with the value 80 rather than 50. This is due to 
the effect on vll of the "do B(3+vII)" statement, which assigns the 
value of 8 to vII by passing the argument to unit "B". 

This concludes our discussion of calculations for now. We can 
calculate, save results, use them to make displays, and show the values. 
In the next section, we will use calculations in association with guiding 
the sequencing of a lesson. 

57 

Bruce
Rectangle

Bruce
Rectangle



Sequencing of Units 
Within a Lesson 

Wc have discussed many units which make different kinds of 
displays. In some cases, the main units had other units attached to them 
by means of -do-. Upon completion of a main unit, the student can 
proceed to the next one by pressing NEXT. A greater varicty of inter-unit 
connections is needed to build a complete lcsson which includes optional 
help sequences, branches to remedial sections whcn the student is having 
trouble, an index that givcs the student some control over the order of 
presentation, etc. This section will discuss, in more detail, how to build 
rich interconncctions into a lesson. This discussion builds on the 
introduction to such matters presented in Chapter 1. 

It is often desirable to skip over somc units, particularly if they are 
used as subroutines, not as main presentation units. We have seen that 
this can bc done by using a -next- command to name the main unit which 
is to follow. For example: 

unit 
r::::a= next 
~ do 

at 

one 
two 
dispone 
1515 

write This is unit one. 
* 
unit dispone 
calc radius<:=(x<:=y<:=200)-50 

(Continued on the next page.) 

5 

59 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

do halfcirc 
* 
unit two 
at 412 
write This is unit two. 

Fig. 5-1a. Fig. 5-1 b. 

60 

When TUTOR begins "executing" the statements in unit "one", it starts 
out assuming that the next physical unit, unit "dispone", will be the next 
main unit. However, TUTOR encounters a "next two" statement which 
says, "No, make a note that unit 'two' will be next, rather than the next 
physical unit". The "do dispone" is then executed, which involves 
drawing a figure. Finally, we write "This is unit one", which is at the end 
of unit "one". Nothing more will happen until the student presses the 
NEXT key, at which time TUTOR looks at its notes and finds that unit 
"two" comes next, whereupon it erases the screen and starts executing 
unit "two". Had we not inserted the -next- command, TUTOR would 
have gone on to unit "dispone" by default. 

To put it another way, TUTOR has a pointer which tells which main 
unit should come next. At the beginning of a main unit, TUTOR places 
zero in this pointer to indicate that the next physical unit should be next. 

Bruce
Rectangle



SEQUENCING OF UNITS WITHIN A LESSON 

If no -next- command is encountered, we reach the end of the unit with 
the pointer still zero, and when the student presses NEXT, TUTOR will 
by default proceed to the next physical unit. On the other hand, if we 
encounter a -next- command anywhere in the unit, it will alter this 
pointer so that later, when the student presses NEXT, the pointer is 
non-zero and is pointing to whatever unit we have specified. 

It should be clear from this discussion that the -next- command can 
be executed anywhere in the unit without changing its effect. Neverthe­
less, it is important to place the -next- command near the beginning of the 
unit. The advantage is that you can then see at a glance what is the main 
sequence How. If the -next- command is buried far down in the unit, you 
have to hunt for this crucial information. You put such unit information 
at the beginning of a unit for the same reason that you define appropriate 
names for the variables you use: you or a colleague may have to read 
through the lesson months after it was written! 

The following is a simple illustration of how the -next- pointer is 
handled: 

unit silly 
next A 
next B 
next C 
* 
unit sillier 

Well, what unit will be next? Answer: unit "C"! The pointer starts out 
cleared to zero (which implies the next physical unit), then gets set to 
"A", then to "B", and finally to "C". Each succeeding -next- command 
overwrites what had previously been in the pointer. 

It is also possible to clear the next pointer yourself by -next- with no 
tag or "next q" (" q" for" quit specifying something"). Either of these 
forms will clear the next pointer so that the next physical unit will come 
next. In other words, the sequence: 

unit start 
next silly 
next q $$ or just "next" with no tag 

* 
unit again 

will proceed from unit "start" to unit "again" because the "next q" 
cancels the "next silly". 

61 

Bruce
Rectangle



The TUTOR Language 

62 

Such seemingly meaningless manipulations are mentioned here for 
completeness and as aids to explaining how TUTOR handles a unit 
pointer, such as that associated with the -next- command. These manipu­
lations will make more sense to you later on in the book. The important 
thing to remember is that you have complete control over the pointer. You 
can set it or clear it with an appropriate -next- command. 

The existence of "next q" (and related statements) means that 
"unit q" is not a permitted statement (you are not allowed to name a 
unit "q" because of the possible confusion). For similar reasons you will 
see later that a unit cannot be named "x". 

Another way to utilize pointers is in specifying optional "help" 
sequences which the student can request by pressing the HELP key. 
Such optional sequences are important tools in tailoring the lesson to 
meet the needs of individual students of diverse backgrounds and 
abilities. Here is an example. (See Figures 5-2a and 5-2b.) 

unit 
~help 
~ at 

dipper 
words 
1215 

$$ specify a help unit 

write Today we will discuss Ursa Major. 
* 
unit 

~help 
~ at 

write 

unit 
at 
write 

* 
unit 
at 
write 

end 

dippy 
words 
2213 

$$ specify a help unit 

Ursa Major is in the northern sky. 

words 
1525 
Ursa Major is the Latin name for the 
constellation which contains 
the "Big Dipper". 
(Press NEXT for more help, 
or Press BACK.) 

words2 
1525 
"Ursa" means "bear". 
"Major" means "bigger". 

Bruce
Rectangle

Bruce
Rectangle



SEQUENCING OF UNITS WITHIN A LESSON 

HELP (base is ~dlppeT''') 

--- ------- --~ 

unlt dipper . ___ \. 

___ -[ :: t ~'d~J 
[

un.t diPP~J J =r- ~o_M~ 

Fig. 5-2a. Fig. 5-2b. 

The -help- command is used to specify a "help" unit, which may be 
just the first unit in a long help sequence. If you provide help in this way, 
the student can get it by pressing the HELP key. (Conversely, if there is 
no -help- command, the HELP key has no effect). When the student 
enters the help sequence, his or her screen is erased to clear the way for 
the display generated by the first help unit. The student may at any time 
press BACK or shift-BACK to return to "home base", the main unit he or 
she was in when requesting help. A "base" pointer retains the name of 
the "base unit" (the unit to return to). In the example, if you press HELP 
in the base unit "dippy", TUTOR remembers "dippy" and jumps to 
"words", from which the BACK key will take you back to "dippy". If 
instead you press NEXT, you advance to "words2", where you can again 
press BACK or shift-BACK to return to "dippy". From "words2" you will 
also return to "dippy" upon pressing NEXT because the -end- command 
in unit "words2" signals the end of the help sequence. 

It is almost as though the student had two screens to look at! The 
student starts the lesson in the first unit ~f a normal, non-help sequence 
and advances in this sequence until he or she requests help. At this point, 
the student turns his or her attention to a different, parallel sequence of 
units, almost as though that student had turned to use another terminal. 
The student can get back to the original sequence by pressing BACK, as if 
he or she had turned back to the original terminal. The usefulness of such 
a parallel sequence is not limited to help sequences but can be used to 

63 

Bruce
Rectangle



The TUTOR Language 

64 

provide review, a desk calculator mode, a dictionary of terms, tables of 
data, etc., or for any situation in which the student temporarily needs a 
second terminal "off to the side". 

It is possible to access yet another help sequence when you are 
already in a help sequence. BACK, however, will return you to the 
original base unit, not the help unit you were in when you requested the 
second help sequence. This is due to the fact that there is only one base 
pointer, which is not changed by the second help request. If there is 
already a base unit specification, TUTOR does not alter it. 

You can alter tbe base unit pointer yourself with a -base- command. 
If you put a -base- command with no tag in unit "words" you will prevent 
a return to "dipper" or "dippy". The -base- command with no tag or a 
"base q" statement clears the base pointer so that TUTOR forgets where 
to return to and thinks that you are not in a help sequence. (You should 
notice that the -end- command in unit "words2" is now ignored. The 
-end- command has no effect in a non-help sequence.) This -base- (blank 
or "q" tag) is used quite often since it is frequently convenient to put the 
student into a non-help sequence, even though he reached a certain point 
by pressing HELP. Also, TUTOR automatically clears the base pointer 
whenever and by whatever means the student reaches the corresponding 
base unit. 

You can change the base pointer to point to some unit other than the 
original one. Imagine that we place the following statement in unit 
"words": 

base dispone 

This means TUTOR will eventually return to "dispone" rather than 
"dipper" or "dippy". This is occasionally a useful technique. For 
example, you might like to return to a unit just ahead of the original one 
in order to ease back into the original context. Notice, too, that while 
-base- with no tag (or "q") can change a help sequence into a non-help 
sequence, so "base unitname" can change a non-help sequence into a 
help sequence by naming a unit to return to. 

You probably will not need all of the features of -help-, -base-, and 
-end- described above, but hopefully the discussion has clarified how 
they do their work. You have also discovered some terms which will be 
quite useful in later discussions and can now talk about "non-help 
sequences" of "main units" and "help sequences" of "main units". It 
should be pointed out that a base unit may have other (auxiliary) units 
attached to it by -do-; and, of course, you return to the base unit itself, not 
to one of these attached units, even if the -help- command is located in an 
attached unit. Moreover, a lesson may be thought of as a collection of 

Bruce
Rectangle

Bruce
Rectangle



SEQUENCING OF UNITS WITHIN A LESSON 

main units which have attached units, and the student moves from one 
main unit to another. The student may enter a help sequence of main 
units, each of which may -do- attached units. While the student is in the 
help sequence, TUTOR remembers which main unit is the "base" unit to 
return to when -end- is encountered, or when BACK or shift-BACK is 
pressed. The following is a diagram of this structure: 

/ 
I attached I 

HELp· ~ rna 1] NEXTr'--_-. 
(optIonal) 

/ 
I attached J 

NEXT r=-~ ---<L:::J 

Fig. 5-3. 

Retul"'n toO 
ba:5e unl t 

You may have realized that -help- and -base- are quitc similar to 
-next- in that all three commands set pointers. (The pointers have 
different uses, however). For example, if we say: 

unit lotshelp 
help a 
help b 
help c 

then the last one wins-the help pointer ends up pointing at unit "c". We 
saw earlier that -next- works this way. Similarly, "help q" or -help- with 
no tag will clear the help pointer, thus making the HELP key inoperative. 

65 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

66 

You may fi nd it helpful to think of a help sequence as a "slow" 
subroutine. Whereas a -do- command takes us to a unit and right back 
again, -help- makes possible an optional jump to a unit or to a sequence of 
units where the student may study for many minutes before returning to 
the base unit. Aside from the "slowness" and the necessity of pressing 
keys to go and return, therc is one fundamental difference from a -do­
situation. In a help sequence, we return from help to the beginning of the 
base unit and re-cxecute the statements in the unit in order to restore the 
original display, whereas the return from a -do- is to the statement 
following the -do-. 

This last point is sufficiently important to warrant an examplc: 

unit 
at 
write 
calc 
* 
unit 
help 
at 
write 
* 
unit 
at 
write 
end 

initial 
2513 
Set "a" to 0. 
a¢o0 

repeat 
trivial 
2715 
Increment "a" to «s,a¢oa+1». 

trivial 
312 
Press NEXT or BACK. 

(Of coursc, "a" must be defined.) If wc repeatedly press HELP, then 
BACK, while wc arc in llnit "repeat" we will repeatedly increment 
variable "a". Variable "a" incrcases by one on every return from the help 
sequcnce because the return is to the beginning of the base unit, and all 
the statements in unit "repeat" are re-executed. This is necessary to 
restore (to the screen) the display associated with unit "repeat", since the 
entire screen is erased when the HELP and BACK keys are pressed. 

This example brings up a fundamental programming point: the 
question of initialization. We might usc a structure like that shown above 
for counting the number of times the student presses the HELP key 
(although we wonld then most likely put the "a¢oa + 1" in the help unit). 
In order to count something (requests for help, number of wrong 
answers, etc.), it is necessary to "initialize" thc connting variable to zero 
before starting the process, and this initialization must precede (and be 
outside) the process itself. This can perhaps best be seen by moving the 
statement "calc a¢o~r' from unit "initial" to the beginning of unit 
"repeat" : 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



SEQUENCING OF UNITS WITHIN A LESSON 

unit 
help 
calc 
at 
write 

repeat 
trivial 
a¢:0 
2715 
Increment "a" to «s,a¢:a+1p. 

Imagine pressing HELP (and BACK) repeatedly. There would never be a 
change in the displayed value of "a", because on each return from the 
help unit, "a" is again reset to zero (whereas that was previously done 
only within unit "initial"). 

The question of initialization will be encountered again and again in 
various guises. These matters were not mentioned earlier partly because 
the iterative -do- command had the initialization built-in. For example: 

do lonk,i¢:5,13 

means "initialize 'i' to 5 and do 'zonk', then repeat by incrementing 'i' by 
one until it reaches 13". 

It should be mentioned here that initialization questions are, of 
course, not unique to programming. The principal and interest due 
monthly on your car or house loan depend on the initial conditions of the 
loan. When you make fudge, you start with certain ingredients in the 
mixing bowl (the initial condition) and then you beat the mixture 200 
times. You would no more restart with new, unmixed ingredients after 
each beating stroke than you would reinitialize a count of student errors 
after each attempt. In other words, questions of initialization are mainly 
questions of common sense, and we will make explicit comments about 
these matters only where confusion is likely. In the case of a return from a 
help sequence, you might have thought that TUTOR remembers the 
entire display originally made by the base unit. However, as you have 
seen, TUTOR must re-create the display by re-executing the commands 
in the base unit (which has side effects related to initialization questions). 

Now, let's move the "calc a¢:0" back to unit "initial" and modify 
the unit to look like this: 

unit 
calc 
jump 
* 

initial 
a¢:0 
repeat $$ do not wait for the NEXT key 

67 



The TUTOR Language 

68 

The -jump- command acts much like the student pressing NEXT (the 
screen is erased and we move to a new main unit). The -jump- command 
is particularly useful in association with initializations, as in this exam­
ple, where it is necessary to separate initializations from a process in a 
different unit. It would be superfluous to show the student a blank screen 
and to make the student press NEXT. Indeed, it should be a basic rule to 
minimize unnecessary keypresses so as not to frustrate the student. 
Notice that -jump- is immediate (like -do- and unlike the -next- or -help­
commands) and that statements which follow -jump- in a unit will not be 
executed (unlike -do-, -next-, and -help-). 

The base pointer is not affected by a -jump-. The pointer remains zero 
if we are not in a help sequence, and it retains its base unit specification if 
we are in a help sequence. The -jump- simply takes us from one new main 
unit to another without having to press NEXT. Since it starts a new main 
unit, a -jump- cancels any -do-s which have been encountered (there will 
be no return from those -do-s). 

When moving from one main unit to another, by -jump- or by 
pressing NEXT, the entire screen is erased unless the first of these two 
main units contains an "inhibit erase" statement. For example, the 
sequence: 

inhibit 
jump 

erase 
more 

will leave the old display on the screen, and displays created by unit 
"more" will be added to the screen. 

Since -jump- takes the student from one main unit to another without 
altering the base pointer, it is possible to take a student to a help sequence 
immediately without pressing HELP: 

unit 

base 
jump 

model 

model 
modhelp 

Initially, the base pointer is zero because we are in a non-help sequence. 
Then, a -base- command is used to set the base pointer to unit "model" 
(the· main unit we are presently in). The -jump- takes us to unit 
"modhelp". 



SEQUENCING OF UNITS WITHIN A LESSON 

Now we arc in a help sequence because the base pointer has been set. 
The return from the help sequence will be to the beginning of unit 
"model". Note the difference between "base model" and "base q" in 
unit "model": a "base q" statement would clear the already-cleared 
base pointer, whereas "base model" sets the pointer to "model". 

Summary of Sequencing Commands 

You have learned a variety of commands which enable you to control 
the sequencing of units in a lesson. These include commands which set 
pointers (-next-, -help-, -base-, etc.) and a couple of immediate branching 
commands (-do- and -jump-). You have seen how to have two parallel 
sequences of main units, a non-help sequence and a help sequence, and 
have used the -end- command to terminate a help sequence. Additional 
aspects of the connections among units will be discussed in Chapter 6 in 
the section on the -goto- command. Recall that the LAB, DATA, and 
BACK keys are activated by -lab-, -data-, and -back- commands, just as the 
HELP key is activated by the -help- command. The shifted HELP, LAB, 
DATA, NEXT, and BACK keys (abbreviated as HELPl, LABl, DATAl, 
NEXTl, and BACKl) are activated by the commands -hclpl-, -labl-, 
-datal-, -nextl-, and -backI-. (When in a help sequence, the BACK or 
BACKI keys will cause a return to the base unit, unless there are explicit 
-back- or -backl- commands to alter this.) Here is a unit which uses many 
of these commands: 

unit 
help 
help1 
lab 
lab1 
data 
data1 
at 

central 
uhelp 
index 
simulate 
calc 
data 
news 
1314 

write Press HELP for assistance, 
shift-HELP for an index, 
LAB for simulation, 
shift-LAB for a calculator, 
DATA for tables of data, 
shift-DATA for class news. 

This is an extreme case, but this unit gives the student six choices of help 
sequences, and which help sequence is entered depends on which key 
the student presses. In any of these cases, the eventual return will be to 
this base unit. 

69 



The TUTOR Language 

70 

The commands -next-, -nextl-, -back-, and -backl- are somewhat 
different in that they do not cause a help sequence to be initiated 
(pressing the corresponding key does not alter the base pointer, and one 
simply moves among main units of the help sequence or non-help 
sequence). 

The same conventions apply to all these commands. In particular, a 
blank tag (or "q") disables the corresponding key by clearing the 
associated pointer. A non-help sequence can be changed into a help 
sequence by specifying a unit to return to with a "base unit" statement. A 
help sequence becomes a non-help sequence if we encounter a "base q" 
or "base" statement, since these clear the base pointer. 

It is important to point out that all the unit pointers, other than 
"base", are cleared when we start a new main unit (either by -jump- or by 
pressing a kcy such as NEXT, BACK, or HELP). Starting a new main 
unit, therefore, involves a number of important initializations, including 
erasing the screen to prepare for the new display (unless there was a 
preceding "inhibit erase"). 

Notice that -jump- and -do- are basically author-controlled branching 
commands, while -help-, -back-, -data-, etc., permit the student to control 
the lesson sequence. 

There is another way to enter a help sequence, which is particularly 
useful in offering the student an index to the various parts of the lesson. 
Suppose the lesson is organized into chapters or topics and you wish to 
lct the student choose his or her own sequence. In particular, the student 
can skip ahead, go back, or review material. It is desirable that thc student 
be able to go to an index or table of contents at any time. One way to 
provide access to the index is to put a "data table" statement in every 
main unit. The student can then hit the DATA key and jump to unit 
"table" at any time. Unit "table" would contain a list of topics for the 
student to choose from, and it should contain a "base" statement to insure 
that the chosen topic be entered as a base sequence. Another way to 
provide access to this kind of index is by means of a single -term­
command: 

unit 
base 

~term 
~ at 

write 

table 

index 
1218 
Choose a chapter: 
a) Introduction 
b) Nouns 
c) Pronouns 
d) Verbs 

Bruce
Rectangle



SEQUENCING OF UNITS WITHIN A LESSON 

arrow 1822 
answer a 
jump intro 
answer b 
jump unoun 
answer c 
jump pron 
answer d 
jump verb 

The presence of "term index" in the unit "table" makes it possible for 
the student to press the TERM key and type "index" in order to reach 
unit "table" at any time. (The TERM key is the shifted ANS key on the 
keyboard.) When the student presses TERM, TUTOR responds by asking 
the student "what term?" at the bottom of the screen, whereupon the 
student would type "index". The student then reaches unit "table", 
where he or she may choose a chapter. You can see that -term- is 
complementary to -help-. The -help- command in a main unit specifies 
where to go if HELP is pressed while in that main unit, whereas the 
presence of -term- in a unit specifies that the unit can be entered from 
anywhere in the lesson. An error is made if another -term- command (with 
the same tag) is placed in a different unit. In this case, TUTOR would not 
know which unit to enter. 

While the -base- command can be put at the beginning of the unit, 
there is some advantage to moving it later on in the unit. With -base­
commands just before the -jtimp- commands, the student retains the 
option of pressing BACK to return to where he or she came from (if he or 
she doesn't like the available choices). This option is lost if the -base­
command has already cleared the base pointer. 

The name -term- stems from an early use of this kind of facility to 
provide a dictionary of "terms", whereby the student has access to the 
special vocabulary used in a lesson. In such an application, there are as 
many help units as there are terms to be defined and each unit has an 
appropriate -term- command: 

unit 
term 
at 
write 
end 

cardinfo 
cardiac 
1907 
"cardiac" means "pertaining to the heart". 

When the student types TERM-cardiac, the screen is erased and the 
definition of "cardiac" is displayed by unit "cardinfo". Immediately 

71 

Bruce
Rectangle



The TUTOR Language 

72 

upon pressing NEXT or BACK, the screen is again erased and the student 
is sent back to the beginning of the base unit. A better procedure in this 
case would be to change the statement "term cardiac" to "termop 
cardiac". The -termop- command refers to "term on page" and permits 
the display given by unit "cardinfo" to be added to the original display 
without any erasing. 

Except for such dictionary appJications, it is strongly recommended 
that you limit yourself to having only one unit with a -term- in it, and its 
tag should be "index". This greatly simplifies the instructions to the 
student on how to use the lesson and minimizes what he must remember 
in order to move around in the lesson. In the index unit you describe the 
various options that are available. Even for providing a dictionary of 
terms, this scheme is probably preferable (one of the options could be 
"dictionary of terms", which in turn would show a list of the words 
whose definitions are available). 

It is possible to have additional -term- commands in the unit to 
provide synonyms: 

unit table 
base 
term index 
term contents 
term choice 
at 1218 
write Choose a topic ... 

These additions insure that the student will reach this unit by TERM­
index, or TERM-contents, or TERM-choice. 

The -he/pop- Command: "Help on Page" 

Often the help to be provided when the student presses the HELP 
key is a brief statement or small drawing which will fit easily on the 
"page" or screen display which the student is viewing. When this is the 
case, such help can be added to the screen by means of a -help- command 
if an "inhibit erase" is used to prevent the current display from disap­
pearing. 

A better way is to lise a -helpop- command. The statement "helpop 
hint" specifies that unit "hint" should be done when the student presses 
the HELP key, without erasing the screen. After going through unit 
"hint", TUTOR returns to the point in the lesson where you were waiting 
for the student to press a key. This could be a -pause- statement, the end 
of a unit {where you were waiting for the student to press NEXT to 

Bruce
Rectangle



SEQUENCING OF UNITS WITHIN A LESSON 

proceed to the next main unit), or an -arrow- command where the student 
was entering a response. The fact that TUTOR returns to the waiting 
point is an additional advantage of -helpop- over the -help- command, 
since return from an ordinary help sequence goes all the way to the 
beginning of the base unit, rather than to the waiting point. (Since the 
original display is still on the screen when -helpop- is used, there is no 
need to redo the base unit to restore the screen display.) No -end­
command is needed in a -helpop- unit, unlike a -help- unit. 

The set of on-page commands includes -helpop-, -help lop- (associa­
ted with the HELPl or shift-HELP key), -dataop-, -datalop- (for the 
DATAl key), -labop-, and -lablop- (LABl key). The -termop- command 
mentioned earlier permits TERM-associated displays "on the page". 

For moving among main units there are the commands -nextop-, 
-nextlop-, -backop-, and -backopl-. These are just like -next-, -nextl-, 
-back-, and -backl-, except that the screen is not erased when proceeding 
to the named unit. These features can be mixed in one unit. If a unit 
contains a -nextop- command and a -back- command, the screen will not 
be erased when NEXT is pressed, but it will be erased if BACK is 
pressed. 

The -imain- Command 

An alternative to "TERM-index" is to tell the student to press a key 
such as shift-DATA to reach an index page. If this index is in unit "table", 
you must then put the statement "datal table" in every main unit, since 
all unit pointers are cleared when a new main unit is entered. A better 
way to do this is to use an -imain- command which specifies a unit to be 
done initially in every main unit; 

imain setit 

unit a unit a 
do setit 

unit b unit b 
do setit 

unit c unit c 
do setit 

unit setit unit setit 
data1 table data1 table 

73 

Bruce
Rectangle



The TUTOR Language 

74 

The -imain- command names unit "setit" to be done at the beginning of 
every main unit. This saves you the trouble of placing the statement 
"do setit" at the beginning of each main unit. 

You can specify all kinds of initializations to be performed in each 
main unit. For example, you might advertise the shift-DATA key with 
this display at the bottom of the screen: 

I Press shift-DATA for an index 

In this case you would write something like: 

imain 

unit 
data1 
at 
write 
box 

setit 

setit 
table 
3218 
Press shift-DATA for an index 
3217;3148 

Now the display will appear with each main unit, and the shift-DATA 
key will be activated. (Incidentally, if you have blank -pause- commands 
in your units, pressing shift-DATA will merely take the student past the 
pause, not to the table of contents. Similarly, pressing the TERM key at a 
blank -pause- will not offer TERM capabilities but will merely take the 
student past the pause. Rather than use a blank -pause-, use a statement 
such as "pause keys=next,datal,term", as discussed in Chapter 8. With 
this kind of pause, pressing shift-DATA will take the student to the index, 
and pressing TERM will give normal TERM features, while pressing 
NEXT will take the student past the pause. Other keys are ignored.) 

The -imain- command sets a pointer, just as the -help- and -base­
commands do. You can change the associated unit by executing another 
-imain- command: 

imain setit 

imain other 

Notice that the new "imain" unit will not be done immediately, but only 
when a new main unit is entered. You must add the statement "do 
other" if you want unit "other" to be done immediately. You can stop 
having an imain-associated unit done by using "imain q", or "imain" 
(blank tag), to clear the -imain- pointer. 

Bruce
Rectangle



SEQUENCING OF UNITS WITHIN A LESSON 

While any key may be used to access an index, many authors have 
agreed to use shift-DATA in order to provide some uniformity from one 
lesson to another. This procedure reduces the number of new conven­
tions a student must learn when studying new material. 

There is a similar -iarrow- command which can be used to specify a 
unit to be performed every time a student enters a response. If the 
-iarrow- command is itself located in the -imain- unit, all-arrow-s will be 
affected. 

75 

Bruce
Rectangle



Conditional 
Commands 

It is important to be able to specify the sequencing of a lesson 
conditionally. We might like to jump past some material on the condition 
that the student has demonstrated mastery of the concept and needs no 
further practice. Or we might like to take the student to a remedial 
sequence conditionally (the condition being poor performance on the 
present topic). Or, which help sequence we offer might be conditional on 
the number of times help has been requested. All of these examples imply 
a need for conditional sequencing or branching statements, where the 
condition may be specified by calculations involving the status of the 
student. 

The usefulness of conditional branching is not limited to the 
sequencing of major lesson segments, but extends to many calculational 
or display situations. For example, we might need to -do- conditionally 
one of several possible subroutines in the course of presenting a complex 
display to the student. This chapter will show you how to perform these 
and similar conditional operations. 

Here is an example involving a conditional -do- statement: 

unit 
calc 
jump 
* 

setup 
N<:=-1 
home 

(Continued on the next page.) 

6 

77 

Bruce
Rectangle



The TUTOR Language 

78 

unit home 
next home 
at 201O 

~do N,neg,uzero,One,utwo 
at 1215 
write N equals «s,N». 
calc N<:=N+1 
* 
unit neg 
write Unit "neg". 
* 
unit uzero 
draw 21O,26O;206O;2O1O 
* 
unit One 
circleb 5O,O,27O 
* 
unit utwo 
write Unit "two". 

The new element is the conditional-do- statement in unit "home". If N is 
negative, that statement is equivalent to "do neg". If N is zero, the 
statement is equivalent to "do uzero", and so on. The statement: 

is equivalent to: 

do N,neg,uzero,One,utwo 

do neg 
do uzero 
do One 
do utwo 

if N is negative 
if N is zero 
if N is 1 
if N is 2 or greater 

Note that unit "utwo" will come up repeatedly because it is the last unit 
named in the conditional -do- statement. The list of unit names can be up 
to 100 long: 

do N,neg,uzero,One,utwo,dispone, 
zon,zip,figure,ultima 

If N is 7 or greater, this statement is equivalent to "do ultima". 

Bruce
Rectangle



CONDITIONAL COMMANDS 

The "conditional expression" (N in this case) can be anything. It can 
be as complicated as "3x - 5 sqrt(N)" and can even involve assignments 
as in "N<;;:35-x". The value of the expression is rounded to the nearest 
integer before choosing a unit from thc list of units. If the rounded value 
is negativc, the first unit in the list is chosen. For example, if the 
expression is -.4, it rounds to zero, in which case the second unit in the 
list is chosen. 

In a conditional -do- each unit named may involve the passing of 
arguments: 

do 3N-4,circ(25,75),box(45)'x,flag,circ(10,30) 
neg 0 1 2 2':3 

So far we havc encountered the following sequencing commands: 
-do-, -jump-, -next-, -nextl-, -back-, -backl-, -help-, -he1pl-, -lab-, -labl-, 
-nextnow-, -data-, -datal-, and -base-. When the tag of such a command is 
just a single unit name (e.g., in a statement like "help uhelper"), we say 
it is "unconditional". To make a "conditional" statcment out of any of 
these, we follow the same rule: statc the conditional expression, followed 
by a list of unit names. So we might have: 

Here, as in unconditional pointer-associated statements, "q" means thc 
"data" pointer is cleared so that the DATA key is disabled. This can be 
used to cancel the effect of an earlier -data- command in this main unit. 
(Remember that all the unit pointers are cleared when we start a ncw 
main unit.) The unit name "x" has the special meaning "don't do 
anything!" In the example shown, if the condition (N -·5) is three or 
greater, this -data- command has no effcct at all and we "fall through" to 
the next statement without affecting the "data" pointer. Similarly, if a 
unit name in the conditional -do- discussed above is replaccd by "x", no 
unit will be done for the corresponding condition and we "fall through" 
to the next statement. 

This "x" option is extremely useful. Consider the following situa­
tion: 

79 

Bruce
Rectangle



The TUTOR Language 

80 

jump correct-5,x,done 
(then show the next item) 

If (correct-5) is negative (that is, the student has made fewer than 5 
correct answers), we "fall through" to the presentation of the next item. 
If, however, the student has 5 or more correct, the condition (correct-5) 
will be zero or greater and we jump to unit "done". 

Logical Expressions 

The last example can be written in an alternative form which 
improves the readability: 

jump correct<5,x,done 

This says "fall through if correct is less than 5, otherwise jump to done". 
The condition (correct<5) we call a "logical expression" because it has 
only two possible values, "true" (-I) or "false" (0), whereas numerical 
expressions can have any numerical value. Since a logical expression can 
have only two values (-I if true, or 0 if false) it is pointless to list more 
than two unit names after the condition. 

Actually, because of rounding, the form "jump N <5,x,done" is 
more precise than the form "jump N -5,x,done". Suppose that N is 4.8. 
Then "N <5" is true (-I), which rounds to -I, which implies "x". But 
"N-5" is -0.2, which rounds to zero, which implies "done". Such 
differences appear whenever you have variables which can have non­
integer values. 

Here is another example: 

do c-b,far,near,far 

The above will do unit "near" if c and b differ by no more than 0.5, since 
(in that case) "c-b" will lie between -0.5 and +0.5, which rounds to 
zero. On the other hand: 

do c=b,same,diff 

will do unit "same" only if c and b are equal. The condition "c=b" is true 
(-I) only if c is equal to b. 

There are six basic logical operators: =, =/, <, >, =0;;, and ~, which 
mean equal, not equal, less than, greater than, less than or equal, and 



CONDITIONAL COMMANDS 

greater than or equal. The statement "do a/b,diff,same" is equivalent to 
"do a=b,same,diff". These comparison operators consider two numbers 
to be equal if they differ by less than one part in 1011 (relative tolerance) 
or by an absolute difference of 10-9, whichever is larger. This is done to 
compensate Jor small roundoff errors, inherent to computers, due to their 
very high but not infinite precision. One consequence is that all numbers 
within 10-9 of zero are considered equal by these logical operators. If 
it is necessary to test very small numbers, scale up the numbers: 
1000a<1000b can be used if a and b are larger than 10-12 (since 
multiplying by 1000 brings the quantities up above the 10-9 threshold). 

You can mix logical expressions with numerical expressions in many 
effective ways. For example: 

calc x<:=100-25(y>13) 

gives "x<:=125" if y is greater than 13 ("y> 13" if true is -1) or it gives 
"x<:=100" if y is less than or equal to 13 ("y> 13" if false is 0). To clarify 
this, suppose that y is 18 or y is 4: 

y=18 
100-25(y>13) 
100-25(18)13) 
100-25( -1) 
100+25 
125 

y=4 
100-25(y>13) 
100-25(4)13) 
100-25(0) 
100-(0) 
100 

In these applications it would be nice if "true" were + 1 rather than -1, 
but the much more common use of logical expressions in conditional 
branching commands dictates the choice of -1 (since the first unit listed 
is chosen if the condition is negative). 

You can combine logical expressions. For example: 

[(3<b) $and$ (b<5)] 

is true (-1) only if both conditions (3<b) and (b<5) are true. In other 
words, b must lie between 3 and 5 for this expression to have the value 
-1. Similarly, 

(y>x) $or$ (b=2) 

will be true if either (y>x) is true or (b=2) is true (or both are true). 
Finally, you can "invert" the truth of an expression: 

81 

Bruce
Rectangle



The TUTOR Language 

82 

not(b=3c) 

is true if (b=3c) is not true. This complete expression is equivalent to 
"b r"3c". 

The combining operations $and$, $or$, and "not" make sense only 
when used in association with logical expressions (which are -lor 0). 
For instance, [b>c $and$ 19] is.meaningless and will give unpredict­
able results. (If you have done a great deal of programming, you might 
wonder about special bit manipulations, but there are separate operators 
for masking, union, and shift operations, as discussed in Chapter 10.) 

The Conditional -write- Command (-writec-) 

A very common situation is that of needing to write one of several 
possible messages on the screen. For example, you might like to pick one 
of five congratulatory messages to write after receiving a correct response 
from the student: 

unit 
~randu 
~ at 

do 
* 

congrat 
N,5 $$ let TUTOR pick an integer from 1 to 5 
1215 
N-2,ok1 ,ok2,ok3,ok4,ok5 

unit ok1 
write Good! 
* 
unit ok2 
write Excellent! 
* 
unit ok3 
write I'm proud of you. 
* 
unit ok4 
write Hu rray! 
* 
unit ok5 
write Great! 

The -randu- command, "random on a uniform distribution," tells 
TUTOR to pick an integer between 1 and 5 and put it in N. We then use 
this value of N to do one of five units to write one of five messages. There 
is a much more compact way of writing this: 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



CONDITIONAL COMMANDS 

unit 
randu 
at 

congrat 
N,5 

~writec 
1215 
N-2,Good!,Excellent!, 
I'm proud of you., 
Hurray!,Great!, 

The -writec- command is similar to that of a conditional branching 
command, but the listed elements are pieces of text rather than unit 
names. Because -write- can be used to display any kind of text (including 
commas), it is necessary to use a different command name (-writec-) to 
indicate the conditional form of -write-, whereas in branching statements 
the commas separating the unit names are enough to tell TUTOR that it is 
a conditional rather than an unconditional form. (In conversation, 
"writec" is pronounced "write-see.") 

You can write whole paragraphs with nice left margins, just as with 
the -write- command: 

writec N",Good!,Excellent!, 
I'm proud of 
you and so 
is your mother., 
Hurray!,Great!, 

The elements of text are set off by commas. If N is 3, the student will see a 
three-line paragraph, since there are no commas at the end of "of" and 
"so". If N is -1 or 0, no text will be displayed, since there is no text 
between the first few commas. Note that "x" is not the fall-through that it 
is for a unit name in a conditional branching command. Here, "x" is a 
legitimate piece of text which can be displayed, so the ",," form is the 
"fall-through" . 

If you want commas to appear in some of your text elements, you 
havc a problem, since the commas delimit elements. Consider this: 

writec N,Hello!,How are you, Bill?,Hi there!, 

If N is zero, we will see "How are you", not "How arc you, Bill?" The 
solution is to use a special character (1): 

writec N1Hello!!How are you, Bill?lHi there!! 

\'ow, if N=0 we will see "How are you, Bill?" While this special 
character (!) is required if text elements contain commas, you may prefer 
to lise it always, even when there are no commas. This special character is 
often called "the writec delimiter". 

83 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

84 

The same kinds of embedding of other commands which are permit­
ted by -write- are also permitted with -writec-: 

writec 2c=b,1 have «s,ap» apples., 
I will buy «s,peachy» peaches., 

The -writec- is affected by -size- and -rotate- commands, just like -write-. 

The Conditional -calc- Commands: -calcc- and 
-calcs-

The effects of -writec- can be achieved by a conditional -do- and a 
bunch of units containing the text elements, but we have seen that this is 
a clumsy way to do it. We would often like to calculate one of several 
things based on a condition. This, too, could be done with a conditional 
-do- to one of several units containing the calculations, but this is 
cumbersome. We saw one shortcut already: 

calc x~100-25(y>13) 

This statement is equivalent to "x~ 125" if y> 13, and to "x~100" if y::;;: 13. 
This can also be written as: 

calcc y>13,x~125,x~100 

The -calec- (pronounced "calc-see") is strictly analogous to -writec-. It 
indicates a list of calculations to be performed, dependent on a condition. 
The elements in the list are calculations rather than picces of text or unit 
names. 

Very often each of the calculations in the list consists of assigning a 
value to the same variable. In the example above, both calculations assign 
a value to the variable "x". An even shorter way to write this kind of thing 
is: 

calcs N-5y,bin~37,5.2,y3+2,,2/N 

The -calcs- (pronounced "calc-ess") will s.tore one of five values in "bin", 
depending on the condition "N - 5y". Note that if "N - 5y" rounds to two, 
we do nothing. Two commas in a row (,,) indicate "do nothing" in -calcs-, 
-calcc-, and -writec-. Just as "x" can be a legitimate piece of text to write, 
so "x" might be a defined variable, which is why it cannot be used as the 
"do-nothing" indicator in these commands. 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



CONDITIONAL COMMANDS 

The Conditional -mode- Command 

For completeness it should be mentioned that the -mode- command 
can also be made conditional: 

mode count-3,write,x,rewrite,erase,write 

Here the list of elements following the condition is similar to the list of 
unit names in a -help- command. In this case, they are the names of the 
various possible screen display modes. The "x" option means "do 
nothing-do not change the present mode." 

The -goto- Command 

The -goto- command is a very mild version of the -jump- command. 
It does not initiate a new main unit and does not perform the initializa­
tions associated with starting a main unit (the screen is not erased, the 
help and other unit pointers are not cleared, and how deep we are in "do" 
levels is unaffected). It is most often used in its conditional form so we 
waited until this chapter to introduce it. 

One common use of the -goto- command is to "cutoff" a unit 
prematurely: 

unit 
at 
write 

r::.::s= g.oto 
~ size 

at 

A 
1315 
You have now finished the quiz. 
score<90,fair,x 
4 
2205 

write Congratulations! 
size 0 
* 
unit 8 
at 1912 
write The next topic is ..... 

unit fair 
at 1815 
write Your score was below 90. 
* 
unit blah 

85 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

86 

In this example, a score of 90 or better will mean that we fall through the 
-goto- to display the large-size "Congratulations!" A score of less than 90 
will take us to unit "fair" to add "Your score was below 90" to the "You 
have finished the quiz" already on the screen. The -goto- does not erase 
the screen, nor does it change the fact that the main unit is still "A". When 
the student presses NEXT, he proceeds to unit "B", the main unit 
following unit "A". He does not proceed to unit "blah". 

Like -do-, the -goto- command attaches a unit without changing 
which unit is "home", whereas -jump- changes the main unit and 
performs the many initializations associated with entering a new main 
unit (full-screen erase, clearing the help pointers, forgetting any -do-s, 
etc.). The main difference between -goto- and -do-, is that the -do- will 
normally come back upon completion of the attached unit, whereas -goto­
does not come back and statements following the -goto- are normally not 
executed. (Some people like to think of the -goto- coming back to the end 
of the unit, whereas -do- comes back to the next statement.) 

The relationships among main units and attached units and among 
-jump-, -goto-, and -do- may be clearer if you think of a lesson as being 
made up of a number of nodes or clusters, each consisting of a main unit 
and its attached units: 

I V~~ 
att. r-

Thls unlt attached 
with -ii;oto-. The 
main unit l~ not 
chanii;ed. 

SUbl~out i ne atta.ched b\"< -do-. 
Subr',-,ut 1 ne use:;:. -go;,. .... to-, but 
,'etur1l5 to main unit. 

Fig. 6-1. 

Bruce
Rectangle



CONDITIONAL COMMANDS 

Movement between main units is made by pressing NEXT (or HELP, 
RACK, etc.) or by executing a -jump-. These main units may form a 
normal sequence or a help sequence (see Chapter 5). The -goto- and -do­
commands attach auxiliary units to these main units. 

Notice that completion of a unit reached by one or more -goto-s will 
cause TUTOR to "undo" one level, if one or more -do-s had intervened in 
reaching this unit. The reason this occurs is that whenever TUTOR 
encounters a -unit- command (which terminates the preceding unit) 
TUTOR asks "Are we at the main-unit level?" If so, we have completed 
processing; if not, we must "undo" to the statement immediately follow­
ing the last -do- encountered. This point deserves an illustration: 

unit calcit 
do sum 
show total 

unit 
calc 
goto 
* 

sum 
totak=0 
addup 

unit addup 

unit other 

$$ initialize "total" 
$$ -goto- used instead of -do-, for 
$$ purposes of illustration 

$$ a calculation of "total" 

In unit "calcit" we -do- "sum", which initializes "total" and does a 
-goto- to unit "addup", where some kind of calculation is performed. 
When we run out of work (by encountering a -unit- command at the end 
of unit "addup"), TUTOH asks whether there was a -do-. There was a 
-do-, so control passes to the statement following the last -do-, which is 
"show total". All of this is perfectly reasonable and useful, but it should 
be pointed out that this property of the -goto- (that it preserves the 
required information to permit "undoing") has an odd side-effect. The 
presence of a -goto- in a done unit causes an exception (the only 
exception) to the description of -do- as a text-insertion device. Except for 
this case, the effect of a -do- is equivalent to inserting all the statements, 
contained in the done unit, in place of the -do- statement. But suppose we 
replace our -clo- with the statements contained in unit "sum". We would 
have: 

87 



The TUTOR Language 

88 

unit calcit 
calc total¢:0} . I f "d sum" 
goto dd In pace 0 0 a up 
show total 
* 
unit addup 

unit other 

Now the -goto- cuts off the rest of unit "calcit", and the -show- will not be 
performed, in contrast with the case where we used a -do-. So, the 
presence of a -goto- in a done unit causes a (useful) exception to the 
text-insertion nature of -do-. 

Here is a summary of the basic properties of the -go to- command: 
1) -goto- may be used to attach units with none of the initializations 

associated with -jump-; 
2) statements which follow the -go to- will not be executed (like 

-jump- and unlike -do-); 
3) a -goto- in a done unit does not cut off statements following the 

original -do- statement, which is an exception to the normal 
text-insertion nature of -do-. 

Additional aspects of -goto- (in relation to judging student responses) are 
discussed in Chapter 8. 

It is often convenient to cut off a unit with a -goto- in the form shown 
in this example: 

unit cuts 
goto expression,x,zonk,empty,x,empty 
write We fell through ... 

unit empty 
* 
unit zonk 

Note that unit "empty" has nothing in it but serves merely to have a place 
to go to in order to cut off the end of unit "cuts". This is such a common 
situation that TUTOR provides an empty unit named "q" (for quit). The 
previous -goto- can be written as: 

Bruce
Rectangle



CONDITIONAL COMMANDS 

goto expression,x,zonk,q,x,q 

The statement "goto q" means go to an empty unit. The special 
meaning of "q" here makes it illegal to have your own unit named "q", 
just as it is not possible to name a unit "x". Since "do empty" can be 
rendered by the equivalent "do x", the statement "do q" (or a condi­
tional form) is given the special interpretation of acting like a "goto q". 
The use of "q" in a -goto- statement is somewhat different from the use of 
"q" in a -help- statement. You will recall from Chapter 5 that "help q" 
means to quit specifying a help unit, by clearing the -help- pointer. 

The -goto- can be used in association with the -entry- command to 
skip over statements: 

calc 
goto 
calc 

b¢'0 
3f> 5,leavit,x 
b¢'f/2 
f¢'0 

~~ntry leavit 

If 3f is greater than 5, we skip over intervening statements to entry 
"leavit". The -entry- command is equivalent to a special -goto- plus a 
-unit-: 

{ 
sp~cial goto 
unit 

leavit } . I ( ,. ) 
I 't eqUiva ent to entry eavlt eavi 

So, unlike a -unit- command, -entry- does not terminate a unit but merely 
provides a named place to branch to. Its equivalence to a special hidden 
-goto- followed by a -unit- command means that an entry is completely 
equivalent to a unit, except for not terminating the preceding statements. 
For this reason it is possible to use an entry name with -do-, -jump-, -help-, 
etc. 

89 

Bruce
Rectangle



The TUTOR Language 

90 

The conditional -goto- is often used for repetitive operations similar 
to those carried out with -do-. Here are two versions of a subroutine to 
add the cubes of the first ten integers: 

-do- -go to-
unit add unit add 
calc totak=0 calc k=1 
do add2,k=1,10 total<:o0 
* goto add2 
unit add2 * 
calc tota I<:=tota I + j3 unit add2 

calc tota I <:otota 1+ j3 

i<:oi + 1 
goto i:510,add2,x 

The last two statements in the -goto- example could be combined as: 

goto (i<:oi+1):510,add2,x 

For the simple task of adding ten numbers, the -do- form is certainly 
easier to construct, but situations occasionally arise where it is easier to 
construct a repetitive loop using a conditional -goto-. 

Except for not changing how many levels deep in -do-s we are, -goto­
is quite similar to -do-. Although the feature is seldom used, it is even 
possible to pass arguments to a subroutine with a -goto-: 

goto zonk(12,25) 

Arguments may also be passed in a conditional -goto-: 

goto 3N -4,alpha(2 + cou nt) ,x, beta (15,2N ),q 

The Conditional Iterative -do-

The conditional and iterative -do- can be combined so that, on each 
iteration, the conditional expression selects which unit to do this time: 

do N +3,ua,ub,uc,ud,k=1, 12 

Jg \ \ \2 

Bruce
Rectangle

Bruce
Rectangle



CONDITIONAL COMMANDS 

For each value of i (from 1 to 12), the expression "N +3" is evaluated, 
which determines which subroutine will be done. For example, if "N +3" 
is 0, the above statement is equivalent to "do ub,i<:=1,12". Usually a 
conditional iterative -do- is used in situations where the conditional 
expression ("N +3") is not changing, but doing one of the subroutines 
can, change N so that a different subroutine is used on the next iteration. 
The following is an example of such manipulations: 

do i -2,ua,ub,uc,ud,i<:=1,4 

In the first case, where i is equal to 1, the condition "i -2" is -1, so we do 
"ua". Then i is incremented to 2, and we do "nb", etc. This is, therefore, 
equivalent to the sequence: 

do ua 
do ub 
do uc 
do ud 

As usual, the specified units can involve the passing of arguments. 
In a conditional non-iterative -do- the unit names "x" and "q" mean 

"don't do anything" and "goto q" respectively. In a conditional itera­
tive -do-, "x" means "don't do anything on this iteration," and "q" means 
"quit doing this statement and go on to the next statement." In other 
words, "x" means "fall through to the next iteration," while "q" means 
"fall through to the next TUTOR statement." For example: 

do i-2,ua,x,q,ud,i<:=1,4 
show i 

will display the number "3". For i equal to 1 we do "ua"; for i equal to 2 
we do nothing; for i equal to 3 we quit and go on to the following -show­
statement. 

The -if- and -else- Commands 

Suppose you want to do one set of statements if x is greater than y, 
and a different set of statements. One way to do this, as we have seen, is to 
pnt the two sets of statements in two different units and write "do x>y, 
nnita, unitb". Another way to perform these operations is to use -if- and 
-else- commands: 

91 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

92 

x>y 
calc Z¢=5y 

if 

Done if x>y { : draw x,Z;x+100,Z+100 
else 

Done if xSy { : 

endif 

at 
circle 

x,y 
50 

The statements between the -if- and -else- commands are performed only 
if x is greater than y, and the statements between the -else- and -endif­
commands are performed otherwise. The tag of the -if- command must be 
a logical expression (one that has values -lor 0). The tag of the -else­
command must be blank. The -end if- command identifies the end of the 
sequence. 

Note that the statements bracketed by -if-, -else-, and -endif- must be 
indented, with an initial period identifying them as indented statements. 
(It is possible that· the details of this indenting format may change. 
Consult on-line PLATO aids for up-to-date information.) 

When do you use a conditional -do-, and when do you use -if- and 
-else-? This depends mainly on the number of statements involved. If 
there are few statements to be performed, -if- and -else- is probably more 
readable. But, if "unita" and "unitb" are long subroutines, the condition­
al -do- is the more convenient form. 

There doesn't have to be an -else-: 

if x>y 
calc Z¢=5y 
draw x,Z;x+100,Z+100 

endif 

This will do the -calc- and -draw- only if x is greater than y. 
There is also an -elseif- for specifying an additional condition: 

if 

Done if x>y { : 

x>y 
calc 
draw 

Z¢=5y 
x,Z;x+ 100,Z + 100 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



CONDITIONAL COMMANDS 

elseif 

Done if x> .5y \. 
but x not . 
greater than . 
y . 

Done if else 
neither of 
the above { : 
is valid endif 

x>.5y 
at 
write 

at 
write 

1225 
This paragraph will be 
displayed only if x is 
not greater than y but 
is greater than .5y. 

1225 
x is less than .5y! 

It is possible to have additional levels of indented -if- structures: 

if a=b $or$ b>3 
calc x¢:b+2 
if count<8 

A second r at 2513 
level of . write Two levels! 
indenting : else 

do subr 
endif 

else 
at 912 
show x 

endif 

The text "Two levels!" will appear on the screen if (a=b $or$ b>3) 
and if (count<8). 

93 



Judging Student Responses 

You now know quite a bit about how to express (in the TUTOR 
language) your instructions to PLATO on how to administer a lesson to a 
student. You may not have realized it, but in the process you have learned 
a great deal about the fundamental concepts of computer programming. 
You can calculate, produce complex displays, and construct rich branch­
ing structures. You have studied aspects of initialization problems, you 
have seen the importance of subroutines, and you have looked at some 
stylistic aspects of good programming practice such as defining variables, 
placing unit pointer commands at the head of main units, etc. With this 
solid background you are now re-ady for a detailed look at how to accept 
and judge student responses. 

In Chapter 1 you saw a common type of judging situation in which 
you simply listed the anticipated responses after an -arrow- statement, 
together with the display or other actions to be performed depending on 
the particular response. Let us see how TUTOR actually processes these 
judging commands. We will consider a slightly different version of the 
"geometry" unit. Remember that in the -answer- and -wrong- statements, 
parentheses enclose synonyms, and angle brackets enclose ignorable 
words. 

7 

95 

Bruce
Rectangle



The TUTOR Language 

unit 
draw 
arrow 
at 
write 
answer 
write 
wrong 
write 

96 

geometry 
510;1510;1540;510 
2015 
1812 
What is this figure? 
<it,is,a> (right,rt) triangle 
Exactly right! 
<it,is,a> square 
Count the sides! 

Fig. 7-1. 

The order of the initial statements has been changed slightly. TUTOR 
starts executing this main unit by drawing the triangle. TUTOR next 
encounters the -arrow- command, places an arrowhead at position 2015, 
and notes where this -arrow- command is (the second command in unit 
"geometry"). TUTOR then executes the -at- and -write- to display the 
text: "What is this figure?" 

Finally, TUTOR reaches the -answer- command. This "judging" 
command is useless at this time because the student has not entered a 
response. There is nothing more that can be done but wait for the student 
to type a response and enter it by pressing NEXT. We call commands 
which operate on the student's response "judging" commands (such as 
-answer- and -wrong-). Other commands, such as -draw-, -at-, -write-, and 
-calc-, are called "regular" commands. We see that TUTOR must stop 
executing regular commands when a judging command is encountered. 
(This assumes the presence of an -arrow- command. An -answer- or other 
judging command without a preceding -arrow- is meaningless.) 

When the student presses NEXT to enter his or her response, 
TUTOR looks at its notes and finds that the -arrow- was the second 
command in unit "geometry". TUTOR starts looking just beyond there 
for judging commands to process the student's response. It skips the 
regular commands -at- and -write- since these are not judging commands 
and are of no use at this point. It encounters the -answer- command and 
compares the student response with the specifications given in the tag of 
the -answer- command. 

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

If there is not an adequate match, TUTOR goes to the next command 
looking for a judging command that might yield a match. In this case, the 
following command is a regular command (-write-) which is skipped. 
Next there is a -wrong- judging command, and if there is no match to the 
student's response, TUTOR kceps judging. At this point, there is a -write­
regular command which is skipped. 

Finally, we come to the end of the unit without finding a matching 
judging command and must give a "no" judgment to this response (and 
possibly mark up the response with underlining and X's if the response is 
fairly close to that specified by the -answer- command). (See Figure 7-1.) 
The process of starting immediately after the -arrow- in the "judging 
state" will be repeated each time thc student tries again with a revised 
response. 

If, on the other hand, the response adequately matches the -answer­
statement, TUTOR has found a match and can terminate the execution of 
judging commands. It switches to processing regular commands with the 
result that the following "write Exactly right!" will be executed. (This 
regular command is skipped unless a match to the -answer- flips TUTOR 
out of the "judging state" into the "regular state".) Then TUTOR, in the 
regular state, comes to a judging command (-wrong-) which terminates 
the processing. TUTOR finishes up by placing an "ok" beside the student 
response. (Similarly, a match to the -wrong- would flip TUTOR to the 
regular state to execute the regular statement "write Count the sides!") 

When the -arrow- is finally "satisRed" by an "ok" judgment, TUTOR 
returns one last time to the -arrow- and searches for any other -arrow­
commands in the unit. In this search it skips both regular and judging 
commands. In our particular example no other -arrow- is found, so all 
arrows (one) in the unit have been satisfied. After the student has read our 
comment, he or she presses NEXT and proceeds to the next main unit. 

It may seem wasteful to yOll that TUTOR keeps going back to the 
-arrow- only to skip over the regular commands preceding the first 
judging command. It turns out that skipping a command is an extremely 
fast procedure, and that keeping a single marker (the location of the 
-arrow- command within the unit) greatly simplifies the TUTOR machin­
ery. 

In the example, the replies "Exactly right!" or "Count the sides!" 
woulel be displayed at location 2317, three lines below the response on 
the screen. This standard positioning can, of course, be altered by an -at­
statement. Here is another illustration: 

unit canine 
at 2105 
write Name a canine: 

(Continued on the next page.) 
97 

Bruce
Rectangle



The TUTOR Language 

98 

arrow 2308 
answer dog 
write A house pet. 
answer wolf 
write A wild one! 
wrong cat 
write A feline! 

Suppose the student enters "wolf" as his response. TUTOR initiates the 
"judging statc" just after the -arrow-. The first -answer- (dog) does not 
match, so TUTOR stays in the judging state and skips the "write A 
house pet." Thcre is a match to the following "answer wolf", so judging 
terminates and thc regular state starts. The "write A wild one!" is 
executed, not skipped. Ncxt, TUTOR encounters a "wrong cat", and 
since -wrong- is a judging command, this terminates the regular state. 
The student gets an "ok" judgment. TUTOR searches for another -arrow­
but does not find one, so the student has successfully complcted the unit. 
(Various units of this kind are illustrated with animated diagrams in the 
on-line "aids" available on PLATO.) 

This method of processing judging and regular commands yields a 
readable programming structure, with judging commands delimiting the 
regular commands used to respond to the student. Wc have spent time 
discussing the details in order to simplify our later descriptions of the 
various types of judging commands used to match, modify, or store 
student responses. 

It is important to point out that the -do- and -goto- commands are 
regular commands. They arc, therefore, skipped over during the judging 
state and during the search state (looking for a possible additional -arrow­
after an arrow has been satisficd). There is another command, -join-, 
which works much like -do- except that thc -join- command is universally 
executed whether TUTOH is in the regular state, the judging state, or the 
search state. III particular, it is possible to -join- units containing judging 
commands, whereas a -goto- or -do- is incapable of accessing other units 
in thc judging state (since these regular commands arc skipped). Al­
though the -do- cOIllmand acts essentially like a -join-, it is, neverthelcss, 
a regular command and is skipped during the judging and search states. 
Only the -join- command itself has the unique characteristic of being 
performed in all states (regular, judging, and search). 

It is frequcntly useful to handle more than one response in a unit. 
Let's ask "Who owned Mount Vernon?" and (after receiving a correct 
response) ask in what state it is located but stay on the same page: 

unit 
at 

wash 
812 



JUDGING STUDENT RESPONSES 

write 
arrow 
answer 
at 
write 
wrong 
at 
write 
arrow 

{ 
~rite 
answer 

Who lived at Mount Vernon? 
1015 
<George,G> Washington 
1120 
Great! 
Jefferson 
1112 
No, he lived at Monticello. 
1715 
1512 
In what state is it located? 
(Va,Virginia) 

If you say "Jefferson" the -wrong- is matched. Regular commands are 
executed until you run into the second -arrow-, which ends the range of 
the first -arrow-. In other words, when you are working on one -arrow-, 
the next -arrow- is a terminating marker. If you say "Washington", the 
student gets the "Great!" comment. Since the -arrow- is now satisfied, 
TUTOR starts at the first -arrow- searching for another -arrow-. In this 
search state, all commands other than -join- are skipped (-join- may be 
used to attach a unit that contains another -arrow-). A second -arrow- is 
encountered, which changes the search state into the regular state. The 
arrowhead is displayed on the screen and the location of this -arrow­
within the unit is noted. The regular commands following this second 
-arrow- are processed to display the second question. The final -answer­
command stops this processing to await the student's response. 

There is another way to do this which is probably more readable: 

unit wash 
next wash 
at 812 
write Who lived at Mount Vernon? 
arrow 1015 
answer <George,G> Washington 
at 1120 
write Great! 
wrong Jefferson 
at 1112 
write No, he lived at Monticello. 

~endarrow 
at 1512 
write In what state is it located? 
arrow 1715 

{ answer (Va, Virginia) 
99 



The TUTOR Language 

100 

The -endarrow- command defines the end of commands associated with 
the first -arrow-. Note that -endarrow- changes the search state to the 
regular state. One benefit of this form is that the second arrowhead 
appears on the screen after the text of the second question, which often 
seems more natural. 

It may seem rather abrupt that the "Great!" and "In what state is it 
located?" both appear on the screen at the same time. It might be better to 
let the student digest the reply before presenting the second question. We 
might insert a -pause- (with the tag "keys=all") just after the -endarrow-. 
Now TUTOR waits for you to press a key, (which signals that you want to 
go on) before presenting the next question. 

The -endarrow- command is quite useful even in units whieh contain 
only one -arrow-: 

arrow 
answer 
write 
answer 
write 
wrong 
write 

~endarrow 
calc 
circle 

1213 
dog 
Bowwow! 
wolf 
Howl! 
cat 
Meow. 

y¢:;37+y 
100,250,250 

The commands following the -endarrow- will be executed only after the 
-arrow- is satisfied, whether it be by the response "dog" or "wolf". So this 
is a convenient way to finish up the unit. 

While it is possible to -join- or -do- units which contain -arrow­
commands, two seemingly arbitrary rules must be followed or you will 
get unpredictable results: 

1) A unit attached by -join- or -do- which contains one or more 
-arrow- commands must end with an -endarrow- command 
(possibly followed by regular commands). 

2) This attached unit must not contain any -goto- commands. 

If you violate either of these rules, strange things will happen 
because TUTOR may "undo" from this unit several times (during 
judging, while processing regular commands, or in the search state). 

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

If you follow these two rules, the -join- or -do- will act like a 
text-insertion device whereby your program will act as though you had 
inserted the attached unit where the -join- or -do- was. We will discuss 
these rules in more detail in Chapter 8. 

Student Specification of Numerical Parameters 

The -answer- and -wrong- commands make it easy to specify a list of 
anticipated responses each of which (due to the specification of synony­
mous and optional words) can allow the student considerable latitude irv/ 
the way he or she phrases his or her response. However, in somc cascs 
there can be no Jist of anticipated responses and a different technique 
must be used. For example, you might ask the student to specify a 
rocket's launch velocity and use his or her number to calculate and 
display the rocket's orbit. Or you might ask the student for his or her 
name for later use in personalized messages such as "Bill, you should 
look at Chapter 5." In such cases, all you can anticipate is that the 
response will be a number or a name, but you can't possibly list all 
possible numbers or names. 

Here is an example of such a situation. We will provide the student 
with a desk calculator accessible on the DATA key. In the desk calculator 
mode the student can type complicated expressions (such as "2+63 ") and 
receive the evaluated result. (Students also have access to a similar 
calculator mode by typing "TERM -calc", which is a built-in PLATO 
feature.) 

unit 
data 
at 
write 

unit 
next 
at 
write 

arrow 
r:::::o= sto re 
~ ok 

write 

mainline 
desk 
3020 
Press DATA for calculator 

desk 
desk 
1713 

$$ for repeated use 

Type an expression. 
Press BACK when finished. 
1915 
eval $$ Be sure to define "eval". 

$$ Accept all responses. 
The result is «s,eval». 

101 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

102 

The -store- command will evaluate the student's expression (e.g., 
"13sin30°") and store the result in "eval" (in this case, the number 6.5). 
The -store- command is a judging command because it operates on the 
student's response and can be executed only after the student initiates 
judging by pressing NEXT. The -ok- command is a universal -answer­
which matches all responses, and unconditionally flips TUTOR from the 
judging state to the regular state. In this example, it accepts any response 
and enables the following -write- to display the evaluated result. 

Note that a student need not use parentheses with functions. For 
example, sqrt25, cos60°, arctan3 are all legal. However, such expressions 
are illegal in a -calc-. In a moment we'll see another way in .which 
TUTOR is more tolerant of students than of authors. 

What if the response cannot be evaluated, such as "( -3)1/2" or "19j" 
or "(3+5)))"? In this case, the student will get a "no" judgment. To see 
how this works, let's insert a -write- statement after the -store-: 

store eval 
write Cannot evaluate! 
ok 

Notice that this new -write- is normally skipped because the -store- leaves 
us in the judging state. But, if the student's expression cannot be 
evaluated, -store- makes a "no" judgment and switches us from the 
judging state to the regular state. TUTOR then executes the "write 
Cannot evaluate!", after which it encounters a judging command (-ok-) 
which stops the regular processing. Note that -store- terminates judging 
only on an error condition, whereas -answer- terminates judging only on a 
match, and -ok- always terminates judging. 

You can tell the student precisely (in a -writec- statement) what is 
wrong with his or her expression by use of the system variable "formok". 
This variable is -1 if the student's expression can be evaluated but takes 
one of several positive integral values for specific errors such as unbal­
anced parentheses, bad form, unrecognized variable name, etc. The 
variable "formok" is defined automatically to perform this function. (If 
you yourself define "formok=v3" you override the system definition and 
you won't get these features.) The particular values assumed by "formok" 
can be obtained through on-line documentation at a PLATO terminal. 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

You can also give the student some storage variables. Let's define a 
couple of variables for the student: 

define student $$ special define set 
bob=v30,cat==v31 

Place these defines ahead of everything else in the lesson. Suppose you do 
a -calc- to assign bob<:=18 and cat<:=3. If the student types "2bob" he gets 
36. Or he can type "bobcat" and get 54, whereas bobcat would be illegal 
in a -calc- where you would need bobxcat or bob(cat). Only names 
defined in the set of definitions labeled "student" may be used by the 
student in this way. Attempted use (by the student) of names in your 
other sets of defines will give a value of "formok" corresponding to 
"unrecognized variable name". 

We have discussed a desk calculator, but clearly the store/ok combi­
nation will work in any situation where we let the student choose a 
number. Another good example is in an index of chapter numbers: 

unit 
base 
term 
at 
write 

arrow 
~IOng 

store 
~no 

~ jump 
write 

table 

index $$ or access by means of shift-DATA, 
1218 $$ as in Chapter 5 
Choose a chapter: 

1) Introduction 
2) Nouns 
3) Pronouns 
4) Verbs 

1822 
1 $$ get one digit; don't wait for NEXT 
chapter 

chapter,x,x,intro,u nou n,pro n, verb,x 
Pick a number between 1 and 4. 

(As previously mentioned in Chapter 5, it would be better to execute the 
-base- command only after deciding to jump, so that the student could 
still use the BACK key to return to the original unit.) The -long- command 
following an -arrow- (but preceding any judging commands) sets a limit 
on the length of the student's response. The "long 1" is particularly 
useful here because the student need not press NEXT but has only to 
press the single number to begin the judging process. (For -long- of 
greater than 1 there must be an accompanying "force long" statement or 
else a NEXT key is required.) The -long- command must precede any 

103 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

104 

judging command since the "long" specification is needed before the 
student starts typing (whereas we proceed past the judging command 
only after the student enters a response). The -long- command may be 
thought of as a kind of modifier of the -arrow- command, in the sense that 
the -arrow- sets a default maximum response length which is overridden 
(or modified) by the following -long- statement. 

The -no- in this index unit is similar to an -ok- command in that it 
unconditionally terminates judging, but the -no- command makes a "no" 
judgment. If "chapter" is a number from 1 to 4, the -jump- will take the 
student to his chosen chapter. (Since -jump- erases the screen the "no" 
will not be seen.) If, however, "chapter" is not in range, we fall through 
the -jump- to an error message, and there will be a "no" next to the 
response (and the student must try again). 

Student Specification of Non-Numerical Parameters 

Now that we have seen how to let the student specify a number, let's 
see how to ask the student to tell us his or her name or nickname to permit 
us to communicate by name: 

unit 
at 
write 

arrow 
long 

~storea 
~ ok 

write 

meet 
1215 
Hello, my name is Sam Connor. 
What's your name? 
1620 
8 
name 

$$ limit to 8 characters 
$$ define "name" earlier 

Pleased to meet you, «a,name»! 

The -storea- command is a judging command which will store alphabetic 
information as distinguished from numeric information. The «a,name» 
is the embedded form of the statement "showa name" which will 
display alphabetic information. This unit will feed back to you any name 
you give it. Notice that you can't enter a name of more than 8 characters 
because of the -long- command. TUTOR stores a capital letter as a "shift" 
character plus the lower-case letter, so if capitalized, the name must be 
shorter because a capital letter counts as two characters. (Insert a 
"force long" statement anywhere before the -storea- if you would like 
judging to start upon hitting the -long- limit, without having to press 
NEXT.) 

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

A statement of the form "storea name,3" will store just the first 
three characters of the student's response. You can get and keep a 
character count of the length of the student's name, including "shift" 
characters, by referring to the system variable "jcount", which is a count 
of the number of characters in the copy of the student response used for 
judging-hence the "f'. With these facts in mind, change the -storea- to: 

storea name,(namlng¢=jcount) 

This will store the whole response and save the length. Be sure to define 
both "name" and "namIng", but do not define "jcount" or you will 
override TUTOR's definition of its function. Also, to show the precise 
number of characters, change the embedded -showa- to: 

<{a,name,namlng» 

The reason for saving the present value of "jcount" in "namIng" is 
that "jcount" will change at each -arrow- in the lesson, whereas through­
out the lesson you will repeatedly use "showa name,namlng" or <{a, 
name,namlng» to call the student by name. So, you want "namIng" to 
keep the name length. Incidentally, a -showa- with only a single argu­
ment (such as "showa name") will show ten characters, which is the 
number of characters (including shift characters) that will fit in one of 
your variables. 

It is possible to store alphabetic information which is longer than ten 
characters. Change the "long 8" to "long 20". Suppose you've defined 
"name=v24." In this case, you must make sure that you are not using v25, 
and change your defines if necessary. The 20-character name will need 
both v24 and v25 since each variable can hold only ten characters. With 
these changes it is possible to enter a long name (e.g., Benjamin Franklin, 
which is 19 characters counting shift characters). 

Difference Between Numeric and Alphabetic Information 

When we were studying the desk calc1llator unit, we defined a 
variable "bob=v30" for the student. Suppose the student responds with 
the word "bob". If we use a numeric -store-, we will get the number 
presently contained in v30, which might be 529.3. If we use an alphabetic 
-storea-, we will get the string of characters "bob" which is simply a name 
and nothing more. Perhaps the distinction is most easily seen with an 
example, which you should write and tryout at a PLATO terminal: 

105 

Bruce
Rectangle



The TUTOR Language 

106 

define student 
bob=v1 

define 

unit 
calc 
arrow 
store 
storea 
ok 
write 

ours,student 
narne=v2,num =v3 
test 
bob¢='IT 
1815 
nurn 
name 

num=<{s,nurn» 
name=<{a,narne,jcount» 

$$ include "student" set of defines 

$$ 'IT means 3.14159 ....... . 

Consider various responses. For example, "2bob" should give a numeric 
2'IT (6.2832) and an alphabetic "2bob". Most often, we speak of "alphanu­
meric" information (letters and numbers) in the latter case. The response 
"3-4/5" yields a numeric 2.2 and an alphanumeric "3-4/5". 

In other words, a storea/showa combination feeds back exactly the 
alphanumeric text entered by the student. However, a -store- involves a 
numerical evaluation of the student's response, and a later -show­
converts this numerical result into appropriate characters to display on 
the screen (so that you can read the result). You might interchange the 
"num" and "name" arguments on the -store- and -storea- commands to 
see the unusual things that happen if you pair -store- with -showa­
(instead of -show-) or if you pair -storea- with -show- (instead of -showa-). 

To sum up, if you accept numeric information with a -store-, display 
it with a -show-. If you accept alphanumeric i~formation with a -storea-, 
display it with a -showa-. 

More On -answer- and -wrong- (Including -list- and -specs-) 

There are some additional features of -answer- (and -wrong-) which 
should be pointed out. First, -answer- will not only handle word or 
sentence responses but will also handle numbers: 

answer 7 women <and> 5 men 

This -answer- will be matched by a student response of the form "14/2 
women and 3+2 men" because simple expressions such as 14/2 or 3+2 
are evaluated by the -answer- command. Currently, the -answer- com­
mand will not handle very complicated numerical expressions. 

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

(Later we will discuss the -ansv- and -wrongv- commands which 
handle expressions as complicated as those handled by -store- but 
without the sentence capabilities of -answer- and -wrong-. There are also 
-ansu- and -wrongu- commands which are similar to -ansv- and -wrongv­
but treat scientific units on a dimensional basis.) 

If the student says "37 women and 5 men," the incorrect number 37 
will have xx under it, whereas the rcsponse "6.5 women and 5 mcn" will 
have the 6.5 underlined since it is nearly correct (similar to a misspelling 
of a word). Normally -answer- and -wrong- consider numbers off by less 
than 10% to be "misspelled." You can alter these specifications by 
preceding the list of -answer- and -wrong- commands with a -specs­
command: 

unit 
arrow 
specs 
answer 

trial 
1815 
toler,nodiff 
7 women <and> 5 men 

The -specs- command is a judging command which affects the operation 
of other judging commands which follow it. Here it has been used to 
specify that a "tolerance" of 1 % is permitted and that "no difference will 
be allowed for underlining" (normally 10%). Having specified both 
"toler" and "nodiff," any expressions within 1% of 7 and 5 will be 
accepted, bot expressions with larger discrepancies will not be under­
lined. 

Note carefully that since -specs- is a judging command, it terminates 
the processing of regular commands. Among other things, this means that 
a -long- command must precede the -specs-, not follow it. If -long- comes 
after -specs-, TUTOR could not prevent the student from entering a 
longer response (since it could not see the -long- command before it 
paused for the student's response). 

Here are some other useful applications of -specs-: 

specs okcap,okspell 
answer the antidisestablishmentarianism doctrine 

This allows the student to capitalize words, and specifies that mis­
spellings are to be considered ok. Note that if the -answer- tag contains 
capitalized words, the student must also capitalize those words. The 
"okC'ap" makes capitalization optional only for those words you have not 
capitalized. You can use -specs- to ignore extra words: 

107 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

108 

specs okextra 
answer Washington 

This states that it is ok to have extra words, so that "It was George 
Washington" will be an acceptable response. The following is another 
example of -specs- capabilities: 

specs noorder 
answer apples pears and peaches 

This specifies that no particular word order is required. Note the absence 
of commas in the -answer- tag. (Such punctuation marks are not allowed 
there, but all punctuation marks are ignored in the student's response, so 
he or she may use commas). Also, note that "answer apples, pears and 
peaches" would represent two synonymous answers, and the student 
could respond either with "apples" or with "pears and peaches". There 
exists a much less powerful -exact- command (as well as other tech­
niques) for judging particular punctuation when that is necessary. For 
example, it is possible to use the -change- command to redefine the 
comma to be a "word" rather than a punctuation mark. In that case, some 
otherwise unused character must be defined to take the place of the 
comma in specifying synonyms. 

specs nookno 
ok 

Here we specify that no "ok" or "no" be displayed beside the student's 
response, contrary to the normal situation. (As an alternative, the 
-okword- and -noword- commands can be used to change the words 
TUTOR uses from "ok" and "no" to something else.) 

(For other -specs- capabilities see reference material described in 
Appendix A.) 

Another important feature of -specs- (in addition to its use in 
specifying various options) is that it marks a place to return to after 
judging. Consider the following unit. You do not define the system 
variable "spell". 

unit 
at 
write 
arrow 
specs 

~{:ritec 

presi 
1212 
Name one of the first three U.S. presidents. 
1513 
bumpshift $$ delete shift codes 
2508 
spell,No misspellings!, 
Underlining indicates a misspelled word. 

Bruce
Rectangle

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

answer washington 
write Good old George. 
answer adams 
answer jefferson 

Suppose the student types "WASHINGTON". TUTOR starts judg­
ing just after the -arrow- and encounters -specs-, a judging command. The 
tag ("bumpshift") tells TUTOR to change the response to "washington" 
for judging purposes. (Incidentally, this operation changes "jcount", the 
character count of the judging copy of the student's response, from 20 to 
10 because the "shift" characters are knocked out.) Moreover, TUTOR 
makes a note that it encountered a -specs- command as the fourth 
command in unit "presi", and this marker will be used in a moment. 
TUTOR skips the following -at- and -writec- because regular commands 
are skipped in the judging state. 

Next, TUTOR encounters "answer washington" which matches the 
student's (altered) response, and this terminates judging. The succeeding 
regular commands are processed as usual. In this case, there is only a 
"write Good old George" before we run into another judging command 
("answer adams") which stops the processing. 

Actually, processing has not completely stopped. It is at this point 
that TUTOR asks one last question: "Did I pass a -specs- command in 
processing this response?" The answer is yes (at the fourth command in 
unit "presi"). TUTOR now processes any regular commands following 
that -specs- marker. In this case, TUTOR does an "at 2508" and a 
-writec- before finally being stopped (really stopped this time) by the first 
-answer- command. 

The -writec- refers to the system variable "spell" which is true (-1) if 
the spelling is correct, and false (0) if a misspelling has been detected. 
The variable "spell" is -1 if there are no underlined words, but there 
may be X' ed words (words that are completely different). 

The usefulness of the marker property of -specs- is that you can 
specify a central place to put messages and calculations, which should be 
done no matter which judging command is matched. We will see 
additional applications of this useful feature of -specs-. Notice that a later 
-specs- command will override an earlier -specs- marker in a manner 
analogous to the way a later -help- command overrides an earlier setting 
of the "help" marker. Note, too, that if no regular commands follow the 
-specs-, TUTOR finds nothing to do when it comes there after being 
nearly stopped as described above. This was the situation in our previous 
examples such as: 

specs nookno 
ok 

109 

Bruce
Rectangle



The TUTOR Language 

110 

In this example, there are no regular commands between the -specs- and 
the -ok-. 

Let us return for a moment to the -answer- command. We had 
examples involving synonyms such as (right,rt) or (Va,Yirginia). A 
convenient way to specify synonym lists which occur frequently in a 
lesson is to define a -list-: 

list affirm,yes,ok,yep,yeah,sure,certainly 

Here "affirm" is the title of a list of synonyms ("affirm" is not itself a 
member of that list). With this definition, which should be placed at the 
very beginning of your lesson along with your -define- statement, you can 
write: 

answer 
wrong 

((affirm)) 
maybe ((affirm)) 

These are equivalent to: 

answer 
wrong 

(yes,ok,yep,yeah,sure,certainly) 
maybe (yes,ok,yep,yeah,sure,certainly) 

Note that "answer we affirm" does not imply this list of synonyms, just 
as a single important word by itself does not refer to a list. You can use the 
list equally well to specify optional words, as in: 

answer «affirm» it is 

Here < <affirm> > is equivalent to <yes,ok,yep,yeah,sure,certainly>. Note 
that <affirm> merely refers to the single word "affirm". Double marks are 
needed to refer to the list whose title is "affirm". You can combine 
references to synonym lists with individual words. For example: 

wrong usually (definite, (affirm)) 
answer often <definite, <affirm> > 

The following list might also be particularly useful: 

list negate,no,nope,not,never,huhuh 

This covers the main capabilities of the -answer- and -wrong­
commands and their associated -list- definitions. The -specs- command 
may be used to modify how -answer- works and also serves as a useful 
marker. The marker function of -specs- is not limited to -answer- but 
holds for any judging commands which follow it, including -ok- and -no-. 



JUDGING STUDENT RESPONSES 

The -answer- (or -wrong-) command can nicely handle responses 
which involve a relatively small vocabulary of words. It is, therefore, 
adequate when the context limits the diversity of student responses (such 
as foreign language translation drills where there are only a few permissi­
ble translations of the sentence and each such sentence contains a rathcr 
small number of allowable words). The detailed markup of the response 
provides the student with useful feedback in such a drill. 

The -answer- command is not well-suited to a more free dialog with 
thc student where the context is broader and where the vocabulary used 
by the student may encompass hundreds of words. In the next section we 
discuss the -concept- command which can copc with more complexity. 

Building Dialogs With -concept- and -vocabs-

An excellent example of a dialog is a lesson on qualitative organic 
chemistry analysis written by Prof. Stanley Smith of the Department of 
Chcmistry, University of Illinois, Urbana. This lesson helps students 
practice their deductive skills on PLATO before they identify unknown 
compounds in a laboratory. Prof. Smith has PLATO randomly choose 
one of several organic compounds and then invites the student to ask 
experimentally-oriented questions aimed at identifying the unknown. 
Typical questions are: "what is the melting point;" "docs it dissolve in 
sulfuric acid;" "show me the infrared spectrum;" "is it soluble in H 20." 
There are over a hundred such concepts important in this simulated 
laboratory situation, and since each concept has many equivalent forms 
drawing upon a vocabulary of hundreds of words, the number of possible 
responses is astronomica1. How can this be handled? 

Although the context is far broader tha~l that of a language drill, it is, 
nevertheless, sufficiently limited to be tractable. No attempt is made to 
recognize arbitrary student responses such as "cook me some apple pie." 
With this quite reasonable restriction, the situation can be handled by 
using the -vocabs- command (analogow; to -list-) to define a large 
vocabulary (with appropriate "synonymization") associated with a Jist of 
-concept- commands (analogous to -answer-) which express the basic 
concepts meaningful in the context of this lesson. The following is a 
fragment of the -vocabs- command: 

vocabs labtest $$ vocabulary must have a name 
<is,it,a,does,in,what> $$ ignorable words 
(color,red,blue,green) $$ word number 1 and synonyms 
(water,H20) $$ word number 2 and synonym 
(dissolve,soluble) $$ word number 3 and synonym 

111 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

112 

And here arc a couple of the many -concept- commands: 

arrow 
concept 
write 
concept 
write 

1213 
what color 
It is red. 
soluble in water 
It's slightly soluble in water. 

Consider what TUTOR does with "concept soluble in water". 
TUTOR knows that -concept- has a tag consisting of words defined by a 
previous -vocabs-. (As usual with such matters, the -vocabs- should be at 
the beginning of the lesson.) The first :-vord in the tag is "soluble" which 
TUTOR finds is the third very important word in the vocabulary 
(discounting the ignorable or optional words "is,it,a," etc.). TUTOR 
groups synonyms together so that "dissolve", too, would be considered a 
"number 3" vocabulary word. The next word of the tag is "in" which 
TUTOR throws away because the -vocabs- command says that the word 
is ignorable. The next word is "water", which is in the second set of 
important -vocabs- synonyms. The net result is that "concept soluble in 
water" is converted to the sequence "3 2". 

Now, consider a student in this lesson who types "does it dissolve in 
H 20". Superficially, this looks quite different from the -concept- tag 
"soluble in water". However, TUTOR encounters a -concept- command 
which, unlike -answer-, indicates that the student's response should be 
looked up in the defined vocabulary. (In the case of -answer- there is no 
one vocabulary set because each -answer- may include various -list­
references and particular words specific to that -answer-.) By a process 
identical to the conversion of the author's -concept- tag, TUTOR converts 
the student's response into "3 2". This compact form "3 2" does not 
match the first "concept what color" (which was converted to "I"), so, 
TUTOR proceeds to the next judging command, which is "concept 
soluble in water" or rather its converted form "3 2". This matches, so 
judging terminates and regular processing begins. The student gets a 
reply "It's slightly soluble in water." 



JUDGING STUDENT RESPONSES 

Notice that the first -concept- encountered triggers the transforma­
tion of the student's response into the compact form suitable for looking 
through a very long list of concepts. If the -vocabs- contains an entry such 
as (five,5,cinco), the student may match this entry with "3+2", just as in 
an -answer- statement involving numbers. 

You will have to experiment a little with this machinery in order to 
learn how best to manage the synonymization in the vocabulary. This 
does depend on the context. In an art lesson it would be disastrous to call 
red and blue synonyms as was done here, but it makes sense in this 
context (where the only concept related to color has to do with "what 
color is it", w hic h means essentially the same as "is it red" or "is it 
blue"). 

You will find that the use of words not defined by -vocabs- will result 
in a markup indicating which words are undefined (X's will appear under 
these words). If your context is such that you need worry only about key 
words and don't care if the student asks "does it dissolve superbly in 
water", you might precede the first -concept- with a "specs okextra" 
which says that extra student words not found in the vocabulary may be 
ignored, as though they had been so specified in the -vocabs- tag. In that 
case, you need not define any ignorable words with -vocabs-, but you 
would write "concept dissolve water", not "concept dissolve in water" 
since extra author words are not tolerated. If you don't use "specs 
okextra", the student's word "superbly" will be marked (xxxxxxxx). If 
the student misspells a vocabulary word, that word will be underlined 
such as "~~l)Jbk in water." 

The follo;ing is an alternative and more detailed version of the heart 
of the dialog lesson, which illustrates several points. It is a rather 
complex example which brings together many aspects of TUTOR. Note 
particularly that the -concept- statemcnts now are listed one after the 
other. The variable "unknown" is a number from 1 to 4 (associated with 
which compound the student is attempting to identify). The system 
variable "anscnt" is set to zero when judging starts (and when a -specs- is 
encountered) and it counts the number of -answer-, -wrong-, -ok-, -no-, 
and -concept- commands passed through. If the third such command 
terminates judging, "anscnt" will have the value 3. If no match is found, 
"anscnt" is set to -1. 

arrow 1213 
wrong what is it 
write That is for you to determine! 

(Continued on next page.) 

113 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

114 

specs 
goto 
writec 

$$ to clear anscnt again 
anscnt>0,u nknown,x 
vocab,l don't understand your sentence., 
The xxxx words are not in my vocabulary. 

concept what color 
concept soluble in water 
concept boiling point 

unit 
goto 
* 
unit 
writec 

unknown 
unknown - 2,reply1,reply2,reply3,reply4 

reply1 
anscntll,lt is colorless., 
It is slightly soluble in water., 
The boiling point is 245-24r C., 

The statement "wrong what is it" is necessary because a "concept 
what is it" contains only ignorable words and would, therefore, not 
distinguish between "what is it" and "does it what", which also contains 
only ignorable words. Since -specs- resets "anscnt" to zero, "anscnt" will 
have the value 2 if the student's response matches the second -concept­
("soluble in water"). No regular commands follow this -concept-, so 
TUTOR goes right to the -specs- marker to execute the regular commands 
there. Since "anscnt" is greater than zero, TUTOR does a -goto- to unit 
"unknown", where there is a -goto- to unit "reply1" (assuming we are 
working on unknown number 1), which writes "It is slightly soluble in 
water" on the student's screen. 

This structure makes it very easy to add a fifth unknown compound 
to the lesson. The -vocabs- and list of -concept- commands do not have to 
be changed, since the basic concepts and vocabulary are pertinent to the 
analysis of any compound. All that is necessary is to add "reply5" to the 
end of the conditional -goto- in unit "unknown" and to write a unit 
"reply5" patterned after unit "reply 1". The lesson revision is completed! 

What happens if the student says "it what does"? This will not match 
the -wrong- nor any of the -concept- commands, so "anscnt" will be -l. 
Therefore, the -goto- just after the -specs- will fall through to the 

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

following -writec-, which gives one of the two messages dependent on 
the system variable "vocab": true if all words are found in vocabulary, 
false if some words are not found (these words would .be underscored 
with xxxx). In this case, the student will get the message "I don't 
understand your sentence", whereas if the student says "what is ele­
phant" he will see the xxxx's under "elephant" and get the message "The 
xxxx words are not in my vocabulary". 

That was a fairly complicated example, but the discussion is justified 
by the general usefulness of many of the techniques employed and by the 
extraordinary power such a structure yields, both in its sophisticated 
handling of student responses and in the ease of expansion to additional 
options. 

Suppose the -arrow- is in unit "analysis". One way to proceed from 
one question to the next would be to place a "next analysis" in this unit. 
There is an efficient way to avoid erasing and recreating the display 
associated with this unit. Instead of proceeding, let's judge each response 
"wrong" so that we stay at this -arrow-. Replace the -specs- command 
with these two statements: 

specs nookno $$ so "no" doesn't appear 
judge wrong 

Despite its name, -judge- is a regular command, not a judging command. 
It can be used to alter the judgment made by the judging commands. In 
this case, TUTOR first skips over this regular command to get to the 
-concept- commands. If one of these commands matches the student 
response, TUTOR makes an "ok" judgment, but upon going to the -specs­
marker TUTOR finds a "judge wrong" which overrides the earlier 
judgment. TUTOR keeps going, processing regular commands, and 
produces a message as we have seen before. The "nookno" specification 
prevents a "no" from appearing on the screen and the student simply sees 

115 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

116 

our message. But the -arrow- has not been satisfied, so when the student 
presscs NEXT, TUTOR erases thc response and awaits a new response. 
Each time, thc student gets a reply to his or her experimental question, 
and the "wrong" judgment takes us back to the -arrow-. 

This is a good way to manage the screen because only a small portion 
of the display changes (the surrounding text and figures remain un­
touched). The "next analysis" re-entry to this same main unit would 
quickly get tiresome because of the repetitious replotting of the sur­
rounding material. 

You should now be able to use -answer-, -wrong-, and -list- in 
situations where the vocabulary is small and -concept- and -vocabs­
where the vocabulary is large. You have seen how to use -specs- both to 
specify various judging options and to mark a place where post-judging 
actions can be centralized. You have seen one form of the regular -judge­
command "judge wrong" which overrides an "ok" judgment made by 
an -answer- or -concept-. 

Another way to get a "wrong" judgment is to use -miscon- ("miscon­
ception") commands instead of -concept- commands. Just as -wrong- is 
the opposite of -answer-, -miscon- is the opposite of -conccpt-. 

There is a particularly convenient way to make different concepts 
equivalent, including different word orders: 

concept dissolve in water 
water soluble 
drop in water 

write It's soluble in H20. 

The "continued" -concept- specifies synonymous concepts. If the stu­
dent's response matches any of these three concepts the same message 
will be given. Also, "anscnt" will be the same no matter which of these 
concepts makes the match. 

Use of -vocabs- makes possible the underlining of misspelled vocab­
ulary words (or their acceptance with a "specs okspell"), just as with the 
-answer- command. Similarly, "specs no order" can be used to indicate 
that no particular word order is required. There is a -vocab- command 
which permits a larger vocabulary (at the price of giving up these spelling 
and order capabilities). Just as the multi-word phrase "sodium *chloride" 
can bc used with the -answer- command, so can such phrases be specified 
in a -vocabs- vocabulary. 

At times you may be interested mainly in root words, no matter what 
endings are attached. The words "walk", "walks", "walked", "walker", 
and "walking" can be added to a -vocabs- very simply as "walk/s/ed/er/ 
ing", which saves you some typing effort. If you want all of these except 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

for "walk" itself to be added to the vocabulary, use a double slash after 
the root: "walklls/ed/er/ing". 

An even more compact way to define common endings is with 
-endings- commands: 

endings 0,s,ed,ing 
endings 9,er,est 

vocabs sample 
will/0,futll19 

The use of the "0" and "9" sets of endings causes the vocabulary to 
contain these words: will, wills, willed, willing, fuller, and fullest ("full" 
itself is missing, due to the double slash). An -endings- set must be 
identified by a number from 0 to 9. 

Numbering Vocabulary Words 

Suppose the student is encouraged to ask questions such as "What is 
the capital of Alabama?" or "What is the area of Alaska?" A compact and 
powerful way to handle all the states is to specify a vocabulary class 
("state") and number the various states. For example: 

define 
vocabs 

concept 
writec 
concept 
writec 
write 

st=v1 
inquiry 
<What,is,the,of> 
{state, Alabama=1, Alaska=2, Arizona=3, ....... J 
capital, area 

capital of state,st¢:state 
st",Montgomery,Juneau,Phoenix 
area of state,st¢=state 
st-2:51,609:586,400: 113,909: ..... . 
sq. mi. 

If the student asks "What is the capital of Alaska?" the first -concept- is 
matched ("capital of state"), and variable "st" is assigned the value "2", 
since "Alaska" was given the value "2" in the vocabulary. Now "st" can 
be used in the following -writec- to tell the student the name of the capital 
(Juneau). Similarly, if the student asks "What is the area of Arizona", the 
second -concept- is matched, "st" is assigned the value "3", and the 
student is given the reply "113,909 sq. mi." 

117 

Bruce
Rectangle



The TUTOR Language 

118 

We can go even further. Consider this altered version, in which the 
two -concept-s are combined: 

define 
vocabs 

concept 
writec 

writec 

st=v1,prop=v2 
inquiry 
<What,is,the,of> 
(state, Alabama= 1, Alaska=2, Arizona=3, ...... ) 
(property, capital=1, area=2) 

property of state, st<:=state,prop<:=property 
2(state-1 )+(prop-1)tMontgomeryt51 ,609 
Juneaut586,400tPhoenixt113,909t ..... 
prop=2t sq. mi.U 

Suppose the student asks about "the area of Alabama". The -concept- is 
matched, "st" is assigned the value "1", and "prop" is assigned the value 
"2". The expression "2(state-1)+(prop-1)" reduces to "2(0)+ 1" or "1", 
which picks out "51,609" from the first -writec-. Since "prop" does equal 
"2", the second -writec- will write "sq. mi." on the screen beside the area 
number. (It would be good practice for you to determine the steps that 
would be taken if the student asked about "the capital of Arizona.") 

Synonyms, phrases, and endings can be numbered, as in this 
-vocabs- entry: 

(verbs, walk=1/ed=2, stroll=1/ed=2, went*past=3) 

According to this numbering scheme, "walk" and "stroll" are number 1 
among the "verbs," "walked" and "strolled" are number 2, and the 
phrase "went past" is number 3. 

The -judge- Command 

We have encountered the regular command -judge- (not a judging 
command) and have seen how it can be used to "judge wrong" a 
response that had already received an "ok" judgment. The -judge­
command may also be used to "judge ok" a response (disregarding what 
a previous judging command may have had to say). The following is a 
conditional form for this type of -judge- command: 

judge 3a-b,ok,x,wrong 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

This form will either make the judgment "ok", leave the current judg­
ment as is (the "x" option), or make the judgment "wrong", depending on 
the condition "3a-b". 

Here is a useful example: 

unit negative 
at 1214 
write 

arrow 
store 
write 
ok 
judge 
writec 

Give me a 
negative number: 
1516 
num 
Cannot evaluate your expression. 

$$ terminate judging 
num<0,ok,wrong 
num<0,Goodl,That's positive I 

We could just as well have written "judge num<0,x,wrong" since the 
original judgment was a universal "ok". (Later we will study -ansv- and 
-wrongv- which are also useful in numerical judging.) Note that 
"judge ok" and "judge wrong" do not cut off the following com­
mands. In the above example, the -writec- is performed, even though it 
follows the -judge- command. The -judge- command here merely alters 
the judgment. If you want to cut off the following commands, you can use 
"judge okquit" or "judge noquit". 

We have been using the -ok- or -no- commands to terminate judging 
unconditionally, as in the last example. It is sometimes useful to be able 
to switch in the other direction, from the regular state to the judging state. 
For example, suppose you want to count the number of attempts the 
student makes to satisfy the -arrow-: 

calc 
arrow 
ok 
calc 

~ judge 
answer 

etc. 

attempt~0 
1518 

attempt~attempt+ 1 
continue 
cat 

119 

Bruce
Rectangle



The TUTOR Language 

120 

Judging starts just after the -arrow-. The -ok- terminates judging to permit 
executing the regular -calc- which increments the "attempt" counter. 
Then the regular -judge- command says "continue judging", which 
switches TUTOR back into the judging state to examine the -answer- and 
other judging commands which follow. If the response is finally judged 
"no", the student will respond again, and since judging starts each time 
from the -arrow-, the "attempt" counter will record each try. (Actually, 
system variable "ntries" automatically counts the number of tries, but 
structures similar to the structure illustrated here are often useful.) 

Leaving out the -ok- and "judge continue" (which permit counting 
each attempt) is a common mistake. If you write: 

calc 
arrow 
calc 
answer 

attempt<:=0 
1518 
attempt<:=attempt+ 1 
cat 

then "attempt" will stop at one. TUTOR initializes "attempt" to 0, then 
encounters the -arrow- and notes its position in the unit. Then, the 
following -calc- increments "attempt" to 1, after which the -answer­
judging command terminates this regular processing to await the stu­
dent's response. The student then enters his or her response and TUTOR 
starts judging. The first command after the -arrow- is the incrementing 
-calc-, which is skipped because it is a regular command and TUTOR is 
looking for judging commands. This will happen on each response entry, 
so "attempt" never gets larger than one. This explains the importance of 
bracketing the -calc- with -ok- and "judge continue". 

A related option is "judge rejudge" which is similar to "judge 
continue". We have seen that "specs bumpshift" alters the "judging 
copy" of the response by knocking out the shift characters. The judging 
copy is the vers ion of the response which is examined by the judging com­
mands (such as -answer-). This version may differ from the student's 
actual response due to various operations such as "specs bumpshift". It 
is also possible to -bump- other characters or to -put- one string of 
characters in place of another. All such operations affect the judging copy 
only and do not touch the original response, which remains unmodified. 
The statement "judge rejudge" replaces the judging copy of the re­
sponse with the original response, thus cancelling the effects of any 
previous modifications of the judging copy. The statement also initializes 
the system variables associated with judging, including "anscnt". It is, 
therefore, much more drastic than "judge continue", which merely 

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

switches TUTOR to the judging state without affecting the judging copy 
or the system variables. 

Another exceedingly useful -judge- option is "judge ignore" which 
erases the student's response from the screen and permits him or her to 
type another response without first having to use NEXT or ERASE. 
Unlike "judge wrong", "ok", or "continue", "judge ignore" stops all 
processing and waits for new student input. (Even the commands 
following a -specs- won't be performed.) On the other hand, TUTOR goes 
on to the following commands after processing -judge- with tags "ok", 
"wrong", or "continue". 

The following routine (which permits the student to move a cursor 
on the screen) is a good example of the heightened i~teraction made 
possible through the use of "judge ignore". We use the typewriter keys 
d,e,w,q,a,z,x, and c which are clustered around a 3 key by 3 key square on 
the keyboard, to indicate the eight compass directions for the cursor to 
move on the screen. These keys (shown in Fig. 7-2) have small arrows on 
them to indicate their common use for moving a cursor. 

Fig. 7-2. 

121 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

122 

unit 
calc 

do 
inhibit 
arrow 
long 
specs 
do 
answer 

cursor 
x¢'y¢'250 
dx¢'dy¢'10 
plot 
arrow 
3201 
1 

move 
d 

answer e 
answer w 
answer q 
answer a 
answer z 
answer x 
answer c 
ignore 
* 
unit move 
*erase old cursor 
mode erase 
do plot 
mode write 

$$ initialize cursor position 
$$ cursor step size 
$$ plot cursor on screen 
$$ don't show the arrowhead 

$$ come here after judging 
$$ -do- is a regular command 
$$ east: anscnt=1 . 
$$ northeast 2 
$$ north 3 
$$ northwest 4 
$$ west 5 
$$ southwest 6 
$$ south 7 
$$ southeast 8 
$$ equivalent to: {no 

judge ignore 

*increment x and y on the basis of "anscnt" 
cales anscnt-2,x¢'x+dx,x+dx,x,x-dx,x-dx,x-dx, 

x,x+dx 
cales anscnt-2,y¢'y,y+dy,y+dy,y+dy,y, 

y-dy,y-dy,y-dy 
do plot 

~ ~udge ignore 

unit plot 
at x,y 
write + $$ use "+" for cursor 

This routine permits the student to move the cursor rapidly in any 
direction on the screen. A letter which matches one of the -answer­
statements will cause the -calcs- statements to update x and yappropriate­
ly to move in one of the eight compass directions. The "long 1" makes it 
unnecessary to press NEXT to initiate judging, and the "judge ignore" 
after the replotting of the cursor again leaves TUTOR awaiting a new 
response. The "judge ignore" greatly simplifies repetitive response 

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

handling such as that which arises in this example. Normally, such a 
cursor-moving routine would be associated with options to perform some 
action, such as drawing a line. This would make it possible for the 
student to draw figures on the screen. 

In addition to the -judge- options discussed above, there is a 
"judge exit" which throws away the NEXT or timeup key that had 
initated judging. This leaves the student in a state to type another letter 
on the end of his or her response. This can be used to achieve special 
timing and animation effects. 

To summarize, the -judge- command is a regular command used for 
controlling various judging aspects. The -ok-, -no-, and -ignore- are 
judging commands which somewhat parallel the "judge ok", 
"judge no", and "judge ignore" options. The "judge rejudge" and 
"judge continue" options make it possible to switch from the regular 
state to the judging state (with or without reinitializing the judging copy 
of the student response and the system variables associated with judg­
ing). All of these options may appear in a conditional -judge- with "x" 
meaning" do nothing": 

judge expr,no,x,ok,continue,wrong,rejudge,x,ignore,ok 

The subtle difference between "judge wrong" and "judge no" will be 
discussed in Chapter 12 in the section on "Student Response Data". 
Basically, "judge wrong" is used to indicate an anticipated (specific) 
wrong response, whereas "judge no" indicates an unanticipated student 
response. Additional -judge- options are "quit", "okquit", and "noquit". 

Finding Key Words: The -match- and -storen­
Commands 

The -match- command, a judging command, makes it easy to look for 
key words in a student's response. The -match- command will not only 
find a word in the midst of a sentence, but it will replace the found word 
in the judging copy with spaces, to facilitate the further use of additional 
judging commands (including -match-) to analyze the remainder of the 
response. Here is the form of a -match- statement: 

match num,dog,(cat,feline),horse,(pig,hog,swine) 
o 1 2 3 

Here "num" is a variable which will be set to -1 if none of the listed 
words appear in the student's response, to 0 if "dog" appears, to 1 if "cat" 
or "feline" is present, 2 if "horse" is in the response, etc. In any case, 

123 



The TUTOR Language 

124 

-match- terminates judging, with a "no" judgment if num= -lor an "ok" 
judgment otherwise. What if more than one of the words appear in the 
student;s response? Suppose the student says: 

"horse and dog" 

In this case "num" will be set to 2 because in looking at the first student 
word we find a match (horse). The judging copy of the response is altered 
by replacing "horse" with spaces so that it looks like: 

" and dog" 

If we were to execute the same -match- again we would get the num ber 0 
corresponding to "dog", and the judging copy would then look like: 

and " 

Note that -match- always terminates judging, so that a "judge continue" 
is needed before another -match- can be executed. Also note that the key 
words are pulled out in the order in which they appear in the student's 
response, not in the order they appear in the -match- statement. 

There are many other ways in which the -match- can be utilized. 
First, we can improve greatly on our cursor program: 

inhibit arrow 
arrow 3201 
long 1 

~ match num,d,e,w,q,a,z,x,c 
~ do num,x,move 

judge ignore 

Unit "move" remains unchanged except to replace (in two places) the 
expression "anscnt-2" by the expression "num -I" (and we can delete 
the "judge ignore" in unit "move"). We see that -match is useful for 
converting a word to a number which represents the word's position in a 
list. 

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

Another good use of -match-.is in an index: 

unit 
base 
term 
at 
write 

arrow 
long 
match 
calc 
jump 
write 

table 

index 
1218 
Choose a chapter: 

a) Introduction 
b) Nouns 
c) Pronouns 
d) Verbs 

1822 
1 
chapter,a,b,c,d 
chapter<:=chapter+ 1 
chapter,x,x,intro,unoun,pron,verb,x 
Pick a,b,c, or d. 

Notice that we must increment "chapter" by one if we want topic "a" to 
be chapter 1, since -match- associates 0 with the first element in its list 
(-1 is reserved for the case where no match is found). If no match is 
found, there is a "no" judgment. (Again, -base- could come later in the 
unit, or at the beginning of the chapters, in which case the BACK key 
would still be active for returning to the place from which the index was 
accessed.) 

These applications barely scratch the surface of -match-s capabili­
ties. Here are some other ideas on how to use -match-: 

1) Use -match- to pull out'negation words such as no, not, never, 
etc. Then "judge continue" and use -answer- or -concept­
commands to analyze the remainder of the response. You can in 
this way separate the basic concept from whether it is negated, 
with the negation information held in the -match- variable for 
easy use in conditional statements. 

2) Use -match- to identify and remove a key-word directive before 
processing the rest of the information. This comes up in simulat­
ing computer compilers, in games ("move" or "capture"), etc. 

A related command is -storen-, which will find a simple numeric 
expression in a sentence, store it in your specified variable, and replace 
the expression with spaces. This is particularly useful for pulling out 
several numbers. The -store- command will handle much more compli­
cated expressions including variables as well as numbers, but can get 
only one number. For example, the student might respond to a question 
about graph-plotting coordinates with "32.7,38.3". These two numbers 
can be acquired by: 

125 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

126 

arrow 
~st~ren 

write 
storen 
write 
answer 
no 
write 

1215 
x 
You haven't given me numbers. 
y 
You only gave me one number. 

$$ remainder should be essentially blank 

There should just be two numbers. 

Like -store-, -storen- will terminate judging on an error condition (in 
which no number was found). In the example, the first -storen- removes 
and stores one number in "x" and the second -storen- looks for a 
remaining number to store in "y". The first -storen- will terminate 
judging if there are no numbers. The second -storen- will terminate 
judging if there is no number remaining after one has been removed. The 
blank -answer- will be matched if only punctuation, such as commas, 
remains after the actions of the two -storen-s. 

Numerical and Algebraic Judging: -ansv- and -wrongv-

We have already had some experience in handling numerical and 
algebraic responses by using -store- to evaluate numerically the student's 
expression. The -ansv- (for "answer is variable") and -wrongv- judging 
commands evaluate the student's expression in the same way as -store­
and also perform a comparison with a specified value. 

The -ansv- command is useful in association with -store-. If you ask 
the student for a chapter number or a launch velocity of a moon rocket, it 
is convenient to use -ansv- to check whether his number is within the 
range you allow. For example: 

arrow 
store 

~ansv 

C?S no 
write 

1314 
chapter 
5,4 $$ match if in the range 5±4 (1 to 9) 

Choose a chapter from 1 to 9. 

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

Another common use is in arithmetic drills: 

define 
unit 
next 
randu 
randu 
at 
write 
arrow 
ansv 
write 
wrongv 
write 
wrongv 
write 
wrongv 
write 
no 

b=v1,c=v2 
drill 
drill 
b,10 
c,10 
1513 

$$ multiplication drill 

$$ pick an integer from 1 to 10 
$$ pick another integer 

What is <{s,b}> times <{s,c}>? 
1715 
bxc $$ no tolerance 
Right! 
b+c 
You added. 
bxc,1 $$ plus or minus 1 
You are off by 1. 
bxc,20% $$ plus or minus 20% 
You are fairly close. 

write You are way offl 

The drill as written will run forever. It could be modified to stop after 5 
straight correct responses, or after some other criterion has been met. 
Note that the response "be" or "bxe is judged "no" (unless you define 
these variables in the "student" set of defines). Also note that the student 
need not do any mental multiplication for this drill (since if the student is 
asked to multiply 7 times 9, he or she could respond with 7x9 which 
matches the -ansv-). 

Let's make a change to require some multiplication on the part of the 
student: 

ansv 
judge 
writec 
wrongv 

bxc 
opcnt =0,ok,wrong 
opcnt=0,Right!,Multiply! 
b+c 

127 

Bruce
Rectangle



The TUTOR Language 

128 

Do not define "opcnt"! It is a system variable which counts the number of 
operations in the student's response. If the student says "7(5+8+3)/2" 
then "opcnt" will be 4 because the student's expression contains: 

1) an (implied) multiplication (7 times a parenthesized expression); 
2) two additions; and 
3) a division. 

In this drill we want the student to give the result with no operations, so 
"opcnt" should be zero ("specs noops,novars" can also be used to 
prevent the student from using operations or variables in his or her 
response). 

Recall that the first -concept- command encountered will trigger the 
reduction of the student's response to a compact form, through the .use of 
the -vocabs-. This compact form can be compared rapidly to all succeed­
ing -concept- commands. Similarly, the first -store- or -ansv- or -wrongv­
causes TUTOR to "compile" the student's expression into a form which 
can be quickly evaluated when another of these commands is encoun­
tered. It is during the compilation process that "opcnt" is set. Just as the 
-vocabs- list tells TUTOR how to interpret the student's words, so the 
"define student" set of names tells TUTOR how to treat names encoun­
tered in the compilation of a student's algebraic response. So, there are 
many parallels between -ansv- and "define student" on the one hand 
and -concept- and -vocabs- on the other. 

Let's look at an algebraic example, as opposed to the numerical 
examples we have treated: 

define 

unit 
at 
write 

randu 
calc 
arrow 
ansv 
goto 
goto 
wrongv 
write 
no 
goto 
* 

student 
x=v1 
simplify 
1215 
Simplify the expression 

3x + 7 + 2x - 5 
x 
x~x+1 

1418 

$$ pick a fraction between 0 and 1 
$$ change to 1 to 2 range 

5x+2 $$ 0 tolerance 
varcnt-1,toofew,x,manyvar $$ how many x's 
opcnt-2,toofew,x,manyop $$ how many operations 
5x+12 
You should subtract 5, not add it. 

formok,x,tellerr 

Bruce
Rectangle

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

unit 
write 
judge 
* 
unit 
write 
judge 
* 
unit 
write 
judge 

toofew 
Your expression is not sufficiently general. 
wrong 

manyvar 
"x" should appear only once. 
wrong 

manyop 
Not simplest form. 
wrong 

Unit "tell err" would contain a -writec- involving the system variable 
"form ok" to tell the student precisely why his or her expression could not 
be evaluated. There could be several -wrongv- statements in the example 
to check for specific errors. The system variable "varcnt" during compila­
tion of the student's cxpression counts the nnmber of references to 
variables. For example, "x+3x+x+2" is numcrically equivalent to 
(5x+2), so that this response will match the -ansv-, but "varcnt" will be 3 
because "x" is mentioned three times. If both x and y were defined, the 
expression "2x+y+4x" would yield a "varcnt" of 3 (two x's and one y) 
and an "opcnt" of 4 (two implied multiplications and two additions). 

In this way "opcnt" and "varcnt" may be used to distinguish among 
equivalent algebraic responses which differ only in form. Roughly 
speaking, what is usually called "simplest algebraic form" often corre­
sponds to the smallest possible values of "opcnt" and "varcnt". 

There are some minor technical points in the preceding example. For 
example, -randu- with only one argumcnt produces a fraction between (/) 
and 1. If this should happen to be very close to (/) then "x" would be 
unimportant in the expression (5x+2), so it seems better to add one and 
give "x" a value between 1 and 2, which is comparable to the other 
quantities in the expression. We could have used the two-argument form 
(e.g., "randu x,8") to pick an integer value for "x". However suppose 
TUTOR chooses the integer 2 for "x". In this case, a student who 
happens to give "12" as his or her response will match the -ansv- by 
accident since 5x+2 = 5x2+2 ::= 10+2 = 12. On the other hand, with 
TUTOR picking a fraction, the student would have to type something 
like "8.93172462173" to accidentally match the -ansv-. This just won't 
happen. You would have to type different numbers 24 hours a day for 
hundreds of years to match accidentally. If you want even more security 
against an accidental match, just change the value of "x" and check again. 
In skeleton form, here is a way to do it: 

129 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

130 

ansv 5x+2 
goto varcnt-1,toofew,x,manyvar 
goto opcnt-2,toofew,checkup,manyop 
wrongv 5x+12 

unit checkup 
randu 
calc 
judge 
ansv 

x $$ new value of x 
x<:=x+1 
continue 
5x+2 $$ try again 

A further check is that we require exactly one "x" and exactly two 
operations. 

There is a way to give detailed feedback to the student in case his or 
her expression is not algebraically equivalent to the desired expression 
(5x+2). Suppose the student's incorrect expression is "6x+2", and that 
you have done a -storea- to save the response and a -store- to evaluate it 
for some integer value of x. Then ask the student this question: 

write What is the numerical value of 
3(<(s,xP)+ 7 +2(<(s,xp )-5? 

If x is 4, this will appear on the screen as: 

What is the numerical value of 
3(4)+7+2(4)-5? 

Many students can handle a numerical example even if an algebraic 
example gives them trouble, so this student is likely to reply correctly, 
either with or without some help, that this expression gives 22. You can 
then reply to the student with this statement (assuming the student's 
alphanumeric response is in "string" and its value is in "result"): 

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

write But your expression, «a,string,count», 
gives «s,result» in this case. 

If the student's response was "6x+2", with a value of 26 (if x is 4), this 
appears on the screen as: 

But your expression, 6x+2, 
gives 26 in this case. 

The student now sees that his or her expression "6x+2" does not give 
the value 22 which it should in the case where x is 4. You have fed back 
the student's own expression, evaluated for a particular case where the 
student can see there is a conflict. (In other words, anything the student 
says may be used against him or her.) Here is an opportunity for the 
student to learn, by example, a useful techniqne in simplifying compli­
cated expressions: try some numerical cases for which you know the 
results and see whether they agree with the simplified expression. 

It is possible to judge equations as well as expressions. Suppose we 
ask the student to simplify the equation "4x+3=x+ 12y-5". A suitable 
response might be "12y=3x+B" or "x=(12y-B)/3". Every time the 
student enters a response, let TUTOR pick a random value for the in­
dependent variable x, and calculate the corresponding value of the 
dependent variable y: y¢:(3x+B)/12. Consequently, any correct equation 
will be true (with value -1), and an incorrect equation will be false (with 
value 0). Here is a unit embodying these concepts: 

define 
unit 
at 
write 

arrow 
ok 

student,x=v1,y=v2 
equate 
1215 
Simplify the equation 

4x+3=x+12y-5 
1718 

randu x $$ random x on each judging 
calc x¢:x+1 

y¢=(3x+8)/12 $$ y depends on x 
judge continue 
ansv -1 $$ logical true 
do ident 
wrongv 0 $$ logical false 
write That is false. 

(Continued on the next page.) 

131 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

132 

no $$ anything else 
write Give me an equation! 
* 
unit 
calc 
judge 
wrongv 
write 
ok 
judge 
writec 

ident 
y¢=3.72y $$ change yarbitrarily 
continue 
-1 $$ should not now be true 
That is an identity! 

varcnt>2,wrong,ok 
varcnt>2,Not simplified.,Fine. 

If the student writes "3+4", this expression has the numerical value 
7, so the reply is "Give me an equation!" 

If the student writes "3=4", this expression has the numerical value 
0, since it is logically false, and the reply is "That is false." 

If the student writes "32 +5=17-3", which is equivalent to 14=14, 
TUTOR replies "That is an identity!" The student's response is true (14 
does equal 14), so that this true relationship has the value -1 which 
matches the -ansv- statement. A "do ident" follows, where the depen­
dent variable y is changed so that y no longer bears the correct relation­
ship to x. If the student's response had been a correct simplification of the 
given equation, his or her expression would no longer be true (-1), since 
y is no longer the correct function of x. In the case of "32 +5= 17 -3", 
however, changing y has no effect and the value is still --1, which 
matches the -wrongv- statement in unit "ident". The student gets the 
message "That is an identity!" 

Only if the student enters an equation which is not an identity will 
he or she get an "ok" judgment. Note the check on "varcnt". There could 
also be a check on "opcnt". 

To summarize, -ansv- and -wrongv- are extremely powerful com­
mands for algebraic or numeric responses, particularly in association 
with variables defined in the" define student" set. The system variables 
"opcnt" and "varcnt" give you additional information about the form of 
the response. 

CAUTION: Since TUTOR performs multiplications before divi­
sions (unless parentheses intervene), a student response of "l/2x" is taken 
to mean "l/(2x)", whereas the student might have in mind "(1/2)x". It is 
important to warn your students of this convention at the beginning of a 
lesson which uses algebraic judging. Scientific journals and most text­
books follow this same convention, but many students are unaware of 
this. Usually, printed materials use the forms i or + x or +. . These 
forms avoid the ambiguities that arise from the slash (f) or quotient sign 

Bruce
Rectangle

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

(7) used on a single typewritten line. It is hoped that eventually TUTOR 
will make it easy for students to type fractions with the horizontal bar 
rather than with the slash or qnotient sign. Until then, it is important to 
point out this convention to your students. 

Handling Scientific Units: -ansu-, -wrongu-, and -storeu-

Suppose you want to ask the student for the density of mercury. A 
correct answer would be "13.6 grams/cm3", but there are many equiva­
lent ways to write the same thing. For example, the student might write 
"13.6x 10-3kg/ (.01 meter)3" or "13.6 gm-cm-3", and both of these 
responses are equivalent to "13.6 grams/cm3". TUTOR provides a 
convenient way not only to judge such responses appropriately, but to 
give the student specific feedback if he or she makes specific errors (such 
as omitting the units or giving the right units but the wrong number). 

The TUTOR scheme is based on the judging performed by human 
instructors when grading exam questions involving numbers and units. 
The instructor makes two separate checks, one for the numerical value 
and the other for the dimensionality of the units. The dimensionality of 
density is (mass)! (length)-3, and it is the powers (1,-3) that we are 
interested in as well as the number 13.6. All of the equivalent correct 
responses listed above have a numerical value of 13.6 (in the gram-em 
system of units) and a mass-length dimensionality of (1,-3). The -storeu­
command (-store- with units) can be used to get the numerical part and 
the dimensionality if we define the units appropriately: 

define student $$ units will be used by student 
~ units,gm,cm $$ can define up to 10 basic units 
"-..J.S gram=gm,grams=gm,kg=1000gm $$ synonyms 

meter= 100cm,cc=cm3 

define mine,student $$ include student define set 
num=v1,dimens(n)=v(1 +n)$$ see "Arrays", Chapter 10 

unit dense 
at 1215 
write 

arrow 
I~sto.reu 
'-l.S wrrte 

no 

What is the density of mercury? 
(Include units!) 
1618 
num,dimens(1 ) 
Cannot evaluate. 

(Continued on the next page.) 

133 



The TUTOR Language 

134 

goto 
goto 
goto 
judge 
write 

num~13.6,badnum,x 

dimens(1)~ 1,badmass,x 
dimens(2) r!- -3,badleng,x 
ok 
Good! 

We will go to a nnit "badnum", "badmass", or "badleng" (not shown 
here) if there is something wrong with number, mass, or length. The 
-storeu- command has two variables in its tag. The first variable will get 
the numerical part of the student's response, and the second (dimens(l) in 
this case) is the starting point for receiving the dimensional information. 
Here are some examples of what will end up in num, dimens(l), and 
dimens(2) for various student responses: 

student response num dimens(1) dimens (2) 
13.6 grams/cm3 13.6 1 -3 
13.6 13.6 0 0 
13.6 em-gm2 13.6 2 1 
13.6 kg/10em 1360 1 -1 

Notice (in the third example) that a minus sign preceding a unit name is 
taken as a dash meaning multiplication, not subtraction. Note in the last 
example that "kg" brings in a factor of 1000 relative to the basic unit 
(gm). Note also that, as usual, TUTOR does multiplication before doing 
division so that the "10 em" is all in the denominator, with the result that 
we have (length)-l. Similarly, "1/2 kg" will be taken to mean 1/(2 kg), not 
(1/2) kg. As mentioned earlier, it is best to point out this matter to the 
student at the beginning of the lesson. 

Like -store-, the -storeu- judging command will flip TUTOR to the 
regular state (with a "no" judgment) if it cannot evaluate the student's 
response. The system variable "formok" can be used in a -writec- to tell 
the student why his or her response can't be evaluated. One example 
characteristic of responses involving units is "5 grams + 3 em", which is 
absurd. You cannot add masses and lengths, and -storeu- will give up. On 
the other hand, the student can say "65 em + 2 meter" and -storeu- will 
set num to 265, dimens(l) to 0 (no mass), and dimens(2) to 1. As another 
example, "cos(3cm)" is rejected, but "cos(3cm/meter)" is accepted. The 
argument of most functions must be dimensionless. (Exceptions are 
"abs" and "sqrt".) 

A related difficulty faces students unless they are specifically warned 
about "3+6 em" being rejected by -storeu- (although it looks reasonable 
in context to the human eye). As far as -storeu- is concerned, however, the 
student is trying to add 3 "nothings" to 6 em, and the units do not have 

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

the same dimensionality. For -storeu- this is as improper as "3 kg + 6 
cm". Unfortunately, until -storeu- and TUTOR become more sophisticat­
ed, it will be necessary to give explicit instructions to the students that; 

1) Multiplications are done before divisions (unless parentheses 
intervene), so that 1/2 kg does not mean (1/2) kg. 

2) Responses such as "3 + 6cm" must bc written rather as 
"(3 +6)cm". 

Notc that these rules also apply in scientific journals and almost all 
textbooks, but your students may not be consciously aware of these 
standard rules. Given only these standard conventions, -storeu- will 
correctly handle an enormous variety of student responses. 

While -storeu- can be used to get the number and dimensionality, the 
-ansu- and -wrongu- commands are primarily used to check for specific 
cases. Let us modify our sample unit to use these commands, which are 
like -ansv- and -wrongv- except for checking for correct units; 

arrow 
storeu 
write 

~ansu 
write 
wrongu 
write 
wrongu 
write 
wrongv 
write 
no 
writec 

1618 
num,dimens(1 ) 
Cannot evaluate! 
13.6 gm/cm3,.1 
Good! 
13.6,.1 
Right number, but give the units! 
(num)gm/cm 3,.1 
Right dimensionality, but wrong number! 
13.6,.1 
Right number but wrong dimensionality. 

dimens(2)= -3,Length ok.,Length incorrect. 

The -anSll- will make a match only if the dimensionality is correct and the 
-wrongu- checks for 13.6 (mass)1l (length)lI, that is, no units given at all. 
The second -wrongu- looks for a number equal to (num), and finds it 
since it is the number the student gave (as determined by -storeu-). 
Therefore, this -wrongu- will match if the number is not 13.6 but the 
dimensionality is correct. The -wrongv-, unlike -wrongu-, is only con­
cerned with the numerical elcment rather than the dimensionality. It is 
used here to check for responses such as "1.3.6 cm". 

135 



The TUTOR Language 

136 

The -exact- and -exactc- Commands 

It is occasionally useful (in special cases) to use a command less 
powerful than -answer- to judge a response. Suppose you are teaching the 
precise format required on some business form, and you want the student 
to type "A B C" exactly, with three spaces between the letters. A 
match to "answer ABC" would occur no matter how the student 
separates the letters. One space, four spaces, a comma or a semicolon (any 
of these punctuations) are permissible separators as far as -answer- is 
concerned. Normally, this flexibility is beneficial to students because it 
keeps them from getting too hung up on petty details. If, howeyer, it is 
the details that are important in a particular response, use an -exact­
command. In the present case, the statement "exact ABC" will be 
matched only if the student types exactly that string of characters: A, 
space, space, space, B, space, space, space, C. 

The -answer- command does not permit punctuation marks in its tag, 
so that a response such as "a:b" must be judged with an -exact- command 
if the colon is important. While punctuation marks cannot appear in the 
tag of the -answer- command, the student can use them in a response. The 
-answer- command will treat all punctuation marks that the student uses 
as being equivalent to spaces. (As an alternative, the -change- command 
can be used to redefine the colon to be considered a "word" and not just 
as a punctuation mark, in which case the -answer- command can be used.) 

It should be emphasized that it is easy to misuse the -exact­
command. The student should normally be given considerable latitude in 
the form of his or her response, such as is permitted by the -answer-, 
-concept-, and -ansv- commands. The -exact- command should be used 
sparingly, and only for short responses. It may be important for the 
student to know the exact format of something that is as long as: 

3 No.6 screws/516-213-86xq-4: New Orleans 

In this case, it would certainly be preferable to have the student pick this 
correct form out of a displayed set of samples than to ask him or her to 
type it exactly. (Then, all the student would need to say is that item 
number 3 is the correct form.) 

There is also a conditional form of the -exact- command, -exactc-. 
(The conditional -answer- command is called -answerc-.) In the case of 
the conditional form of the -do- command, the presence of commas tells 
TUTOR that the statement is conditional, so a -doc- command name is 
not needed. But -write-, -answer-, and -exact- may have tags which 

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

include commas, so the conditional command names must be different 
(-writec-, -answerc-, -exactc-). 

The -answerc- Command: A Language Drill 

The conditional -answer- command, -answerc-, may be used to create 
vocabulary or translation drills. Here is a sample unit which will give the 
student practice with Esperanto numbers: 

unit espo 
next espo 
at 1812 
write 
randu 
at 
writec 
arrow 

Give the Esperanto for 
item,5 
2015 
item-2,one,two,three,four,five 
2113 

answerc item-2;unu;du;tri;kvar;kvin 

$$ pick an integer from 1 to 5 

$$ note semicolons 

Each item in the -answerc- can be as complicated as the tag of an -answer­
command. For example, "answerc select: <it,is,a> (right,rt) triangle, 
<it,is,a> three*sided (polygon,figure) U circle,ring" will accept either "rt 
triangle" or "three sided polygon" if "select" is -1, will accept nothing if 
"select" is zero, and will accept "circle" or "ring" if "select" is one or 
more. Note that items must be separated by a semicolon or by the -writec­
delimiter. There is also a conditional -wrong- command, -wrongc-. 

You might write yourself a similar unit to drill yourself on historical 
dates, capitals of nations, etc. The drill just shown has three defects: (1) it 
never ends; (2) you may see the same item two or three times in a row; and 
(3) no help is available if you get stuck. Let's revise the sample unit to 
have the following characteristics: it should present the five items in a 
random order but without repeating any item; any items missed will then 
be presented again; the student may press HELP to get the correct 
answer. 

We will be using a random sequence of non-repeating item numbers 
such as: 

4,2,1,5,3. 

137 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



The TUTOR language 

138 

This is called a "permutation" of the five integers. The following 
sequence is another permutation: 

2,5,3,1,4. 

You can see that there is a large number (120) of different permutations of 
five integers. Correspondingly, there is a large number of different 
permutation sequences for presenting the drill to the student. Such 
sequences of non-repeating integers are quite different from the sequenc­
es we get from repeated execution of our "randu item,5", which 
produces sequences (with some integers repeating and some not showing 
up for a long time) such as: 

3,2,4,4,1,5,1,2,4,3,5,5,2,etc. 

We need some way of asking TUTOR to produce a permutation for 
us, rather than the kind of sequence produced by -randu-. This is done by 
telling TUTOR to set up a permutation of 5 integers ("setperm 5") from 
which to draw integers ("randp item") until the sequence is finished 
(indicated by "item" getting a value of zero). The -setperm- command 
actually sets up two copies of the permutation, and the "remove item" 
statement can be used to remove an integer from the second copy. (The 
-randp- draws integers from the first copy.) If we -remove- only those 
integers corresponding to items correctly answered on the first try, the 
second copy will contain only the difficult items (after completing the 
first pass over the five items). At this time, we can use -modperm- (which 
has no tag) to modify the first copy by shoving the second copy into the 
first copy. Having replenished the first copy with the difficult items we 
can use -randp- to choose these again. 

Here is a form of the drill incorporating these ideas: 

unit 
,r:::::::s= ~etperm 
~ Jump 

* 
unit 
calc 

r:::::o= ~a n d p 
~ Jump 
r:::::o= mod perm 
~ randp 

jump 

begin 
5 
choose 

choose 
attempk0 
item 
item >0,espo,x 

item 
item >0,espo,x 

$$ set up two copies of a permutation 

$$ initialize number of attempts 
$$ pick an integer 
$$ jump if first copy not empty 
$$ use second copy if first copy empty 

$$ jump if second copy not empty 

Bruce
Rectangle



JUDGING STUDENT RESPONSES 

at 
write 

end 
* 
unit 
next 
help 
at 
write 
at 
writec 
arrow 
answerc 
90to 

.~remove 

~ no 
calc 
* 

2115 
Congratulations! 
You finished the drill. 
lesson $$ end the lesson 

espo 
choose 
esphelp 
1812 
Give the Esperanto for 
2015 
item-2,one,two,three,four,five 
2113 
item-2;u nu ;du ;tri; kvar;kvin 
attempt>0,q,x 
item $$ remove item jf correct on first attempt 

attem pt¢oattem pt + 1 

unit esphelp 
calc attempt¢oattempt+ 1 $$ count HELP as an attempt 
at 1613 
writec 
end 

item-2,unu,du,tri,kvar,kvin 

We want to remove an item only if the student gets it right on the first 
try, which means "attempt" should be zero. The "goto attempt>0,q,x" 
means "goto a fictitious, empty unit 'q' if attempt is greater than 0, else 
fall through." If we fall through, we remove the item ("l'f~move item"). 
We increment "attempt" on each try (and also when help is requested) so 
that if the student has to see the answer, the item is not removed and will 
be seen again. Note that the studellt is required to type the correct 
response and cannot sec this answer while he or she types, which gives 
the student additional practice on the difficult items. 

Summary 

This chapter has demonstrated an array of techniques for judging 
various types of student responses. There are -answer- and -wrong- (aided 
by -list-) for handling sentences composed from a relatively small 
vocabulary of words. There are -eoneept- and -miscon- (supported by 
-Hlcabs-) to handle dialogs involving a large vocabulary. The -match- and 

139 

Bruce
Rectangle



The TUTOR Language 

140 

-storen- commands can be used to pull out pieces of a student's response. 
The -storea- and -store- commands allow the student to specify alphanu­
meric or numeric parameters. There are -ansv-, -wrongv-, -ansu-, and 
-wrongu-, aided by "define student", for judging numerical and alge­
braic responses. The -exact- and -exactc- commands can be used when it 
is important that the response take a particular precise form. The -specs­
command permits you to exercise various options associated with these 
commands and also provides a convenient marker of centralized post­
judging processing. The regular -judge- command offers additional 
control over the judging process. 

The construction of randomized drills using -setperm-, -randp-, 
-remove-, and -modperm- (and featuring the conditional commands 
-answerc- and -wrongc-) was also illustrated in this chapter. 

It is hoped that you will read over this chapter occasionally in the 
course of writing curriculum materials. The TUTOR judging capabilities 
are extremely rich (because of the wide range of student responses that 
must be handled in order for lesson material to be successful). Reread 
appropriate sections of this chapter at a later time, when you need the 
details. For now it is sufficient to know what is available, and roughly in 
what form. You may find it helpful to think of the judging commands 
introduced in this chapter as making up two major classes: those used for 
handling words and sentences (-answer-, -answerc-, -list-, -concept-, 
-vocabs-, -match-, -storen-, -storea-, and -exact-), and those used for 
handling numbers and algebraic expressions (-ansv-, -define-, -ansu-, 
-store-, and -storeu-). 

Bruce
Rectangle

Bruce
Rectangle



More About Judging 

The previous chapter described the array of major response-judging 
features of the TUTOR language. We can now discuss the judging 
process in more detail, after which we will see how to treat responses that 
don't quite fit the categories of the previous chapter. 

Stages in Processing the -arrow- Command 

The following is a summary of the several stages of processing 
involved when there is an -arrow- command. 

Stage 1 The -arrow- command is executed. The arrow is displayed 
on the screen, and a marker is set to remember the unit and 
location within the unit of this -arrow- command. Regular 
processing continues until a judging command is encoun­
tered, at which point there is a wait while the student types 
a response. 

Stage 2 The student presses NEXT or otherwise completes his or 
her response. TUTOR uses its -arrow- marker to start 
judging at the statement following the -arrow- command. 
Only judging commands are executed; all regular com­
mands are skipped. Executibn of a -specs- command sets a 
-specs- marker to remember the unit and location within 
the unit of this -specs- command. 

8 

141 



The TUTOR Language 

142 

Stage 3 Some judging command terminates judging and succes­
sive regular commands are executed until a judging com­
mand is encountered, which ends this regular processing, 
even if we are several levels deep in -do-so There is no 
"undoing". An -arrow- or -endarrow- will also halt this 
regular proccssing without permitting "undoing". (If no 
judging command terminates the judging phase, the end of 
a unit with no more "undoing" to do; an -endarrow-; or 
another -arrow- will end Stage 3 and make a "no" judg­
ment.) 

Stage 4 If the -specs- marker has bcen set, regular processing 
begins at the statement following the last -specs- command 
encountered. (The -spccs- marker is cleared.) This process­
ing terminates in the same way as the regular processing of 
Stage 3. If the judgment is not "ok," the -arrow- is not 
satisfied. The student must erase part or all of the response 
and enter a different response, which initiates Stage 2 
again. 

Stage 5 The search statc is initiated if there is an "ok" judgment. 
TUTOR again uses the -arrow- marker to start processing at 
thc statement following the -arrow- command, this time in 
a search for another -arrow-. Only -join-s are executed, all 
othcr commands (regular or judging) are skipped during 
this search state. If an -arrow- command is encountered, 
TUTOR begins Stage 1 for this additional -arrow-. If an 
-endarrow- command is encountered, the search state ends 
and rcgular commands arc processed. If neither -arrow- nor 
-endarrow- is encountered, the student can press NEXT to 
go on to the next main unit, having satisfied all the -arrow-so 

This all sounds rather complicated, written out in this way, but in most 
practical cases this structure turns out to be quite natural and reasonable. 
It is, nevertheless, useful to look at some unusual cases to further clarify 
the various processing stages. 

Repeated Execution of -join-

The following is an example of the repeated execution of a -join- in 
regular, judging, and search states (remember that -join- is similar to 
-do-): 

unit mufty 
cafc i¢=0 



MORE ABOUT JUDGING 

arrow 1514 
~join i¢=i+1,ansdog 
CJS endarrow 

at 2514 
show 
* 
unit 
answer 
write 

ansdog 
dog 
Bowwow! 

The conditional -join- has only one unit listed, so we will always join unit 
"ansdog" no matter what value the expression (i¢=i+ 1) has. Upon first 
entering unit "multy", we do the -calc-, the -arrow-, and the -join-, all in 
the regular state. This terminates at the -answer- command to await a 
student response. Note that i is now 1, due to the assignment (i¢=i + 1) 
contained in the conditional -join-. Suppose the student types "cat" and 
presses NEXT. TUTOR starts at the statement following the -arrow- and 
executes the -join- in the judging state (incrementing 1 to 2 in the 
process). No match is found for "cat", so the student must give another 
response. Suppose the student now enters "dog". TUTOR again starts 
judging just after the -arrow- and again executes the -join- (thus incre­
menting i to 3). This time there is a match to "answer dog" which 
changes the state from judging to regular. The "write Bowwow!" is 
executed, and the end of unit "ansdog" causes TUTOR to "undo" back 
into unit "multy", where the -endarrow- signals the end of the statements 
associated with the -arrow-. Since we received an "ok" judgment, we are 
ready to search for any other -arrow-s that might be in unit "multy". We 
return to the -arrow- one last time, this time in the search state. The -join­
is executed to see whether there is an -arrow- command in unit "ansdog", 
with the incidental result that i gets incremented to 4. No -arrow- is found 
in unit "ansdog" and we "undo" into the -endarrow- command, which 
changes us from search state to regular state. The -at- and -show- are 
executed and we get "4" on our screen, due to the quadruple execution of 
the -join-. 

Aside from illustrating some consequences of the processing rules, 
this example should emphasize that using the assignment symbol (¢=) in a 
conditional-join- may have unexpected results. Note that -join- is the only 
command with these properties, due to the fact that it is the only 
command executed in regular, judging, and search states. It is important 
that -join- be universally executed in this way so that you can join judging 
commands in the judging state and even -arrow- commands in the search 
state, not just regular commands in the regular state. 

143 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

144 

Judging Commands Terminate Regular State 

The rule that a judging command terminates the processing of 
regular commands is an important and general rule. We have seen that 
this must be true upon first encountering an -arrow- (the first judging 
command after the -arrow- makes TUTOR wait for a student response, 
since that judging command needs a response to work on). Lt£s see 
another instance of the rule: 

arrow 1518 
answer dog 
write Bowwow 
wrong cat 
write Meow 
wrong horse 

If the student says "dog", he or she gets a reply "Bowwow" and regular 
processing stops at the "wrong cat" because -wrong-, a judging com­
mand, terminates the regular state. Similarly, if the student response is 
"cat", the statement "write Meow" is the only regular statement which 
is executed. The judging commands delimit those regular commands 
associated with a match of a particular judging command. This delimit­
ing effect is achieved because: 

1) Regular commands are skipped in the judging state; and 
2) The processing of regular commands ends whenever a judging 

command is encountered. 
Now let's consider a slightly modified sequence: 

arrow 
~join 
l:JS write 

wrong 

1518 
dogcat 
Meow 
horse 



MORE ABOUT JUDGING 

unit 
answer 
write 
wrong 

dogcat 
dog 
Bowwow 
cat 

Supposedly, the "join dogcat" will act as though the statements of unit 
"dogcat" were inserted where the -join- is, which should make this 
modified version equivalent to the earlier version. Indeed, the rule that a 
judging command terminates the processing of regular commands does 
make the two versions equivalent, as we will show. Remember, in this 
discussion, that -join- is the same as -do- except for the universal nature of 
-join-. 

Suppose the student types "dog". We start just after the -arrow-, in 
the judging state. The -join- is executed and we find a matching 
"answer dog" which ends judging and puts us in the regular state. The 
"write Bowwow" is executed. The statement "wrong cat" is encoun­
tered next. The judging command -wrong- stops the processing of 
regular commands and also prevents coming out of the joined unit. Even 
though we are one level deep in -join-s, TUTOR will not "unjoin" and the 
"write Meow" which follows the "join dogcat" will not be executed. 
What will happen is just what happens in the earlier version: we have an 
"ok" judgment which causes the search state to be initiated at the -arrow­
(there was no -specs-). Thus, the two versions operate in identical 
manners because the -join- acts like a text insertion. Note that a response 
of "cat" will get a reply "Meow" because there is no judging command 
following the "wrong cat" (and a normal "undo" is performed at the 
end of unit "dogcat"). 

This last example illustrates the importance of the rule "a judging 
command terminates the regular state." It is this rule which insures that 
-join- (or -do-) will act like a text insertion. 

In the discussion of the -goto- command in Chapter 6, we saw that a 
-goto- in a done unit destroys the strict text insertion character of the -do-. 
This is true in the present context as well. Suppose we insert a -go to- in 
unit "dogcat" (any -goto- will do, we'll use a "goto q"): 

unit 
answer 
write 

~goto 
wrong 

dogcat 
dog 
Bowwow 
q 
cat 

The student enters "dog" and we do unit "dogcat" where the match to 
"answer dog" flips us from the judging to the regular state. The regular 

145 

Bruce
Rectangle



The TUTOR Language 

146 

commands -write- and -goto- are executed. (Note that -goto-, like -do-, is 
only regular whereas -join- is universal, being executed not only in 
regular but in judging and search states.) The execution of the -goto­
prevents TUTOR from encountering the "wrong cat" which previously 
terminated the regular state. We have run out of things to do in unit 
"dogcat" and are one level deep in -do-so TUTOR, therefore, "undoes" 
and executes the "write Meow" which follows the "join dogcat"! The 
student will see "BowwowMeow" on the screen. If, on the other hand, 
we replace the "join dogcat" with the statements contained in unit 
"dogcat" we would have: 

arrow 
answer 
write 

~goto 
'----J.S wro n g 

write 
wrong 

1518 
dog 
Bowwow 
q 
cat 
Meow 
horse 

and a response of "dog" would merely cause "Bowwow" to appear on the 
screen, not "BowwowMeow". 

We have again seen that a -goto- in a done unit can cause the -join­
operation to behave differently from a text insertion. We get different 
effects depending on whether we -join- such a unit or put that unit's 
statements in place of the -join- statement. You can avoid confusion by 
not using -goto- commands in "done" or "joined" units which contain 
-arrow- commands or judging commands. 

The -goto- is a Regular Command 

Since the -goto- command is a regular command, it is skipped in the 
judging and search states. Here is a sequence of commands which 
illustrates the fact that the -goto- is skipped in the judging state: 

Bruce
Rectangle



MORE ABOUT JUDGING 

arrow 1612 

~~oto dogcat 

unit dogcat 
answer dog 
write Bowwow 
wrong cat 

When the -arrow- is first encountered, an arrow is displayed on the screen 
at 1612. TUTOR continues in the regular state and executes the -goto-. 
The -answer- in unit "dogcat" ends this regular processing to await the 
student's response. Suppose the student types "dog" and presses NEXT. 
TUTOR starts judging just after the -arrow-, skips the regular -goto­
command, and finds no judging commands at all. The student's response 
gets a default "no" judgment. The -goto- should be replaced by a -join- so 
that unit "dogcat" will be attached in the judging state. 

Similarly, the following is an erroneous sequence which illustrates 
the fact that the -goto- command is skipped in the search state: 

arrow 1612 
specs bumpshift 
answer dog 

~goto another 
wrong cat 
* 
unit another 
arrow 2514 
answer wolf 

The student responds to the first -arrow- with "dog" and matches the 
"answer dog", which switches the processing from the judging state to 
the regular state. The -go to- is executed, and in unit "another" we 
encounter an -arrow- command. This -arrow- command terminates the 
regular processing just as a judging command would. The -specs- marker 
was set, so we will now execute any regular commands following the 
-specs- command (there are none in this example). Since the student's 
response was "ok", the search state is now initiated. TUTOR starts at the 
"arrow 1612" looking for another -arrow- command. The -specs-, 
-answer-, -goto-, and -wrong- are skipped in the search state, and we come 
to the end of the unit without finding an -arrow-. Thus the -go to- did not 

147 



The TUTOR Language 

join response 

148 

succeed in attaching a second -arrow-. If the -goto- is replaced by a -join-, 
the "wrong cat" will be associated with the second -arrow- (2514). This 
is due to the text insertion nature of the -join-, which interposes the 
statements of unit "another" between the "answer dog" and the 
"wrong cat". One correct way to write this sequence is shown below: 

arrow 1612 
specs bumpshift 
answer dog 
wrong cat 
endarrow 
goto another $$ or "do another" 
* 
unit another 
arrow 2514 
answer wolf 

The -goto- or -do- placed after the -endarrow- will not cause any problems 
because the search state has been completed, and the -endarrow- flips us 
from the search state to the regular state. 

Considerations of this kind suggest that some care must be exercised 
when using -join- or -do- to attach units containing -arrow- commands. 
To avoid unpredictable results follow these two rules: 

1) A unit attached by -join- or -do- which contains one or more 
-arrow- commands must end with an -endarrow- command. This 
insures that the unit will end and "undo" in the regular state. (It 
is permissible to have regular commands following the 
-endarrow-.) 

2) The attached unit containing one or more -arrow- commands 
must not contain any -goto- commands. (A -goto- can make 
TUTOR fail to see the -endarrow- or a judging command so that 
a premature "undo" occurs.) 

If these two rules are followed, the -join- or -do- will act precisely as 
though you had inserted the statements of the attached unit where the 
-join- or -do- was. Here are examples of good and bad forms: 

GOOD BAD 
unit response unit response 
answer apple answer apple 
do newton goto newton (Don't use -goto- here) 
wrong pear wrong pear 



MORE ABOUT JUDGING 

write 
GOOD (continued) 

Wrong fruit. write 
BAD (continued) 

Wrong fruit. 
endarrow (Do use -endarrow- here) 

Interactions of -arrow- with -size-, -rotate-, -Iong-, 
-jkey-, and -copy-

When an -arrow- command is performed, several things happen. An 
arrow character is displayed on the screen, cuing the student to enter a 
response. A note is made of the unit and location within that unit of the 
-arrow- command so that TUTOR can return to this marked spot when 
necessary. Even the trail of -do-s (and/or -join-s) which brought TUTOR 
to this -arrow- command is saved, so that each restart at the -arrow- will 
be at the appropriate level of -do- relative to the main unit. The current 
settings of -size- and -rotate- are saved, to be restored each time so that 
you can write a size-3 reply to a student's incorrect response without 
affecting the size of his or her corrected typing. In other words, response­
contingent settings of -size- and -rotate- are temporary, whereas in other 
circumstances they are permanent until explicitly changed: 

size 
rotate 
arrow 
answer 
size 
rotate 
write 
answer 
endarrow 
at 
write 

2 
o 
1718 
dog 
4 
30 
Woof! 
wolf 

2218 
This is in size 2, rotate 0. 

The last writing appears in size 2, rotafe 0 despite the size 4, rotate 30, 
that were contingent on the student's response, "dog." When the search 
state is initiated, the original size and rotate settings are restored. 

149 



The TUTOR Language 

150 

Similarly, if "dog" had been judged wrong, the student's revised typing 
would have been in size 2, not 4, because the original size and rotate are 
restored before waiting for the student's revised input. 

Executing an -arrow- command has other important initialization 
effects: 

1) A default response limit of 150 characters is set. The student 
cannot enter a response longer than 150 characters (including 
"hidden" characters such as shift-codes and superscripts). This 
can be altered by following the -arrow- command with a -long­
command to change this to as much as 300. If this is a "long 1," 
judging will commence as soon as the student types one charac­
ter. If more than 1 is specified, the student is prevented from 
entering more characters and must press NEXT to initiate 
judging, unless a "force long" statement has appeared in the 
unit. 

2) A default specification of "judging keys" is set. In most cases, 
the NEXT key is solely responsible for starting the judging 
process. However, there are two other possible ways to begin 
judging: (1) hitting the limit with a "force long"; or (2) if there 
is a "long 1", typing one character will begin judging. This can 
be altered by following the -arrow- command with a -jkey­
command to specify additional judging keys (NEXT is always a 
judging key). One example is "jkey data,help" which would 
make the DATA and HELP keys equivalent to the NEXT key at 
this arrow. 

3) A default specification is set to disable the COpy key. The 
-arrow- command can be followed with a -copy- command to 
specify a previously stored character string to be referenced with 
the COpy key. An example is "copy v51,v3", where v51 is the 
start of the character string and v3 is the number of characters. 
This way of specifying a string of characters is the same as the 
scheme used with -storea- and -showa-. 

Some explanation of the COPY and EDIT keys is required. The 
EDIT key is always available for the student to use in correcting his or 
her typing. Pressing the EDIT key the first time erases all typing, after 
which each press of the EDIT key brings back the typing one word at a 
time. This makes it easy to make corrections and insertions without a lot 
of retyping. Each press of the COpy key, on the other hand, brings in a 
word from the character string specified by the -copy- command, as 
opposed to bringing in the student's own typed words with the EDIT 

Bruce
Rectangle



MORE ABOUT JUDGING 

key. One example of the use of the COpy key is seen in the PLATO 
lesson editor. In this case, you as an author can use the COPY key in 
insert or replace mode to bring in portions of a preceding line without 
having to retype. The COPY key must be specifically activated by a 
-copy- command, but the EDIT key is always usable, unless you specify a 
-long- greater than the normal limit of 150. (To use the EDIT key on 
responses longer than 150 characters requires you to furnish an edit 
buffer through an -edit- command.) 

The -long-, -jkey-, and -copy- commands all override default specifi­
cations set by the -arrow- command. They can be thought of as modifiers 
of the -arrow- command. If they are to have an effect on the student's first 
response, they not only must follow the -arrow- command but must 
precede any judging commands: 

arrow 1518 $$ sets default values 

ljkey help } 
copy cstring,ccount These commands alter the default values. 
long 15 
-specs- or -answer- or -store- or any other judging command 

If -jkey-, -copy-, or -long- came after the first judging command, the 
-arrow- defaults would hold for the first response because the modifying 
command would not have been executed yet. 

Applications of -jkey- and -ans-

Use of the -jkey- command is well illustrated in the case of providing 
help to the student (through the HELP key) without leaving the page. 
(This is an alternative to the more commonly used -helpop- command 
described in Chapter 5.) If giving help requires an entire screen display, 
or a whole sequence of help units, it is best to use a -help- command to 
specify where to jump if the student presses HELP. The screen is then 
erased automatically to make room for the help page (unless the original 
base unit had an "inhibit erase" in it). On the other hand, sufficient help 
might consist merely of a brief comment or some additional line­
drawings on the present page. A cOIlvenient way to provide such help 
without leaving the page is: 

151 



The TUTOR Language 

152 

arrow 
f5ff" jkey 

answer 
no 
write 

1815 
help 
cat 

Hint: it meows ... 

The statement "jkey help" makes the HELP key completely equivalent 
to the NEXT key. If the student presses HELP, judging is initiated, the 
student's (blank) response does not match "cat", and he or she gets "Hint: 
it meows ... ". Without the -jkey- command, the HELP key would be 
ignored (which would be unfortunate). It is a very good idea to have the 
HELP key do something at all times so that the student can come to rely 
on help being available. 

In this example, the student will get the same assistance whether he 
or she presses HELP or types "dog" followed by pressing NEXT. We 
could give different kinds of assistance in these two cases by changing 
the -write- statement to a -writec-: 

arrow 
jkey 
answer 
no 
writec 

1815 
help 
cat 

key=help,Meow?,The answer is cat. 

The system variable "key" always contains a number corresponding to 
the last key pressed by the student. In this case the last key will either be 
HELP or NEXT. If the student presses HELP, the logical expression 
"key=help" will be true (-1) and the student gets the reply "Meow?" 
But, if the student presses NEXT, then the logical expression "key=help" 
is false (0) and the student gets "The answer is cat." The lower-case word 
"help" is defined by TUTOR to mean (in a calculational expression) "the 
number corresponding to the HELP key." Other similarly defined names 
include next, back, and help1 (for shift-HELP). 

The following is another way of writing the same sequence: 

Bruce
Rectangle



MORE ABOUT JUDGING 

arrow 
jkey 

1815 
help 

no 
judge 
write 
answer 
no 
write 

$$ terminate judging 
key=help,x,continue 
Meow? 
cat 

The answer is cat. 

If key=help, we "fall through" the -judge- command and write "Meow?" 
If the key "is not equal to help (that is, the student pressed NEXT), a 
"judge continue" is performed to return to the judging state. The 
"write Meow?" is skipped since -write- is a regular command. If the 
response does not match "cat", the student will get the message "The 
answer is cat". As usual, there are many ways in TUTOR to do the same 
thing! In a particular situation one scheme may be more appropriate than 
another. 

There is an ANS key on the keyset which is often used to let students 
skip through material by just pressing ANS: 

arrow 
jkey 
ok 
judge 
write 
answer 

1817 
ans 

key=ans,x,continue 
The answer is cat 
cat 

Since the ANS key generates an ok judgment here, the student will move 
on immediately to the next arrow or unit without having to type the 
correct answer. This procedure could best be utilized when the student is 
in the review mode. That is, you might define "review=v 1", zero it 
initially, and set it to -1 only after the student has gone through the 
material once under his or her own power. With the following structure, 
the student will be able to use the ANS key only when reviewing the 
material: 

153 

Bruce
Rectangle



The TUTOR Language 

154 

arrow 1817 
do review,jans,x 
ok 
judge key=ans,x,continue 

unit jans 
jkey ans 

Another way to activate the ANS key for the student is to use the -ans­
command with a blank tag. 

arrow 2123 
~ans 

"-.Stt:fl write The answer is cat. 

In the above example, the single -ans- command is equivalent to the 
following: 

jkey ans 
ok 
judge key=ans,x,continue 

The -ans- command is a judging command and must be the first judging 
command after the -arrow-. When it is first encountered, it sets up ANS to 
be a judging key, and it is matched only if the ANS key is pressed. If the 
-ans- command is used only to provide a kind of help, but not to let the 
student pass on to the next item, put a "judge wrong" after the -ans­
command. 

In many places you may do specific things in response to the ANS 
and HELP keys. Elsewhere in the lesson it is appropriate merely to 
utilize these keys so that something will happen when they are pressed. 
Just put "jkey help,ans" after each such -arrow-. The student will then 



MORE ABOUT JUDGING 

get (at least) whatever reply you give him or her after the universal -no­
that catches all unrecognized responses. Certainly, every -arrow- should 
provide some kind of feedback to unrecognized responses or the student 
will become perplexed. The "jkey help,ans" will further insure that a 
reasonable response to the student's input is always forthcoming. With­
out this -jkey- statement, nothing would happen when the student presses 
ANS or HELP. 

An additional procedure is advisable. Often a student will press 
NEXT an extra time, perhaps because he or she hadn't noticed that a 
response was to be typed. This blank response, consisting only of a 
NEXT key, will probably get judged "no" at most arrows, which requires 
an additional NEXT (or ERASE) to clear the "no" judgment before 
typing a response. This can get confusing. In most cases it is best simply 
to ignore blank responses by means of the statement "inhibit blanks", 
which can be put in the -imain- unit (see Chapter 5). This statement 
causes blank-NEXT inputs to be ignored, but other blank inputs such as 
HELP or ANS are not ignored. 

Use a -join- to insert recurring statements after an -arrow-: 

arrow 
join 
answer 

unit 
inhibit 
jkey 

1917 
anshelp 
cat 

anshelp 
blanks $$ or the -inhibit- could be in an -imain- unit 
ans,help 

Placing "join anshelp" after each -arrow- will insure that extra NEXT 
keys are thrown out (while responses involving ANS or HELP keys, will 
fall through to whatever reply you give to unrecognized responses). Note 
that you must use -join-, not -do-, to attach unit "anshelp" if you add any 
judging commands to that unit. 

Just as the -imain- command can be used to specify a unit to be done 
at the beginning of each new main unit, there is an -iarrow- command 
("initialize arrow") which can be used to specify a unit to be joined after 
every -arrow-. With the statement "iarrow anshelp", it is unnecessary to 
write "join anshelp" after every -arrow- command. Unit "anshelp" will 
be joined automatically after every -arrow-. 

155 



The TUTOR Language 

156 

Modifying the Response: -bump- and -put-

It is possible to delete characters from the judging copy of the 
student's response by using the -bump- command: 

arrow 
rs;g=bump 

answer 

1812 
as3 
rdvrk 

$$ delete all a's,s's, and 3'5 

This -answer- will be matched if the student types "33 aardvarks" 
because the -bump- command reduces the judging copy of the response 
to" rdvrk." The original response is not altered and can·be recovered with 
a "judge rejudge". Also, the screen display is unaffected: the student 
still sees "33 aardvarks" on the screen just as he or she typed it. On the 
other hand, all judging commands following the -bump- are affected 
since they all operate on the judging copy (not on the original response). 
For example, a -storea- following the -bump- would give you" rdvrk". 
Here is another example: 

define cfirst=v1,csecond=v2 

unit 
at 
write 

arrow 
long 
storea 

~bump 
storea 
ok 
write 

first=v11,second=v21 
conson 
913 
Type anything, and I'll 
remove the vowels: 
1309 
100 $$ from v11 to v21 is 100 characters 
fi rst,cfi rst¢=jcou nt 
aeiou 
second,csecond¢=jcou nt 

You typed «a,first,cfirst». 
Remove vowels: «a,second,csecond». 
You used «s,cfirst-csecond» vowels. 

Note that "cfirst" is the number of characters (including hidden charac­
ters such as shift characters) in the original response, whereas "csecond" 
is the number of characters after the -bump- has removed the vowels. 
This is a true count since "jcount" always has an up-to-date character 
count of the judging copy, as influenced by -bump- and related opera-

Bruce
Rectangle



MORE ABOUT JUDGING 

tions. (You may recall that "specs bumpshift" also affects "jcount" by 
removing shift characters.) Suppose the student types "Apples taste 
funnier". In this case, the student will get the reply: 

You typed Apples taste funnier. 
Remove vowels: Ppls tst fnnr. 
You used 7 vowels. 

The reason that the word "Apples" turns into "Ppls" with a capital "p" is 
that a capital "A" is really a shift character followed by a lower-case "a". 
With the "a" bumped out, the shift character stands next to the "p", 
making a capital "P". 

While the -bump- command will delete characters, the -put- com­
mand will change particular strings of characters: 

arrow 
~put 
"-..S.!S put 

storea 
ok 

1218 
cat=dog 
rat=mouse 
first,jcount 

showa first,jcount 

All occurrences of "cat" change into "dog", and all occurrences of "rat" 
change into "mouse". Suppose the student types "Scattered cats scratch 
rats". The reply will be "Sdogtered dogs scmousech mouses"! 

Both -bump- and -put- are judging commands. They operate on the 
student's response. Like all judging commands, they stop processing 
when encountered during the processing of regular commands. The -put­
command has a property similar to -store- in that it can terminate judging 
with a "no" judgment if it cannot handle the student's response: 

arrow 
put 
write 
ok 

1218 
cat=enormous 
Too many cats! 

157 

Bruce
Rectangle



The TUTOR Language 

158 

If the student has many "cats" in his or her response, the -put- may cause 
"jcount" to exceed the 150-character response limit. In this case, it 
changes to the regular state, and the student gets the message "Too many 
cats!" This regular -write- command normally is skipped, since we're in 
the judging state. 

The following is an equivalent form of -put- which is often easier to 
read: 

put cat=dog 
putd Icat/dogl 
putd ,cat,dog, 

All three of these statements are equivalent. The -putd- (d for delimiter) 
takes the first character as the delimiter between the two character strings. 
Other examples of its use are: 

putd 1=lequalsl $$ convert = sign 
putd I II $$ remove all spaces 

It is also possible to change variable character strings by using -putv- (v 
for variable): 

putv first,cfirst,second,csecond 
~' v~' 

string and count string and count 

When you combine -put- and -bump- commands, you must be careful 
about how you arrange them. For example, the following sequence is 
nonsense: 

bump 
put 

a 
cat=dog 

With all a's bumped the -put- will not find any eat's. Similar remarks 
apply to sequences of -put- commands. 

The -bump- command looks for single characters, so "bump B" 
will not merely bump capital B's. All shift characters will be bumped as 
well as lower-case b's. In other words, "bump B" is really 
"bump shift-b". If you want to eliminate only capital B's, use 
"putd IBI!". This will find occurrences of the string of characters 
"shift-b" and replace this string with a zero-length string, thus deleting 
the B. 

The main purpose of -bump- and -put- is to make minor modifica-

Bruce
Rectangle



MORE ABOUT JUDGING 

tions to the student's response and convert it into a form which can be 
handled by standard judging commands. For example, the word-oriented 
judging commands (-answer-, -match-, -concept-, etc.) cannot find pieces 
of words. Suppose that for some reason you need to look for the fragment 
"elect", and you don't care whether this appears in the word "selection" 
or "electronics" or "electoral". Do this: 

arrow 
specs 

~putd 
t...:J.S answer 

1723 
okextra 
/elect/ elect / 
elect 

The -putd- is used here to put spaces before and after the string "elect" so 
that it stands out as a separate word. You could also use the values of 
"jcount" before and after executing the -putd- to determine whether 
"elect" was present. The number of times it appeared could also be 
determined from these values. The value of "jcount" will increase by two 
for each insertion of two extra spaces. 

Manipulating Character Strings 

The judging commands -bump- and -put- operate on the judging 
copy of the student's response. It is sometimes useful to manipulate other 
strings of characters with -pack-, -move-, and -search-. These commands 
are regular commands, not judging commands. Like -showa-, they 
operate on stored character strings, not the judging copy of the student's 
response. These commands are mentioned here because they are often 
used in association with the analyzing of student responses. In particular, 
the judging command -storea- can be used to get the response character 
string. It can then be operated on with -move- and -search-. Finally, the 
altered character string can be loaded back into the judging copy with the 
judging command -loada- (load alphanumeric; the -loada- command is 
precisely the opposite of -storea-). Since this section deals with a rather 
esoteric topic, you might just skim through it now to get a rough idea of 
what character string manipulations look like. If you later find a need for 
such operations, you should study this section again. 

159 

Bruce
Rectangle



The TUTOR Language 

160 

Here is an example of a -move- statement: 

move v3,5,v52,21,8 

This means "move 8 characters from the 5th character of the string that 
starts in v3 to the 21st character of the string that starts in v52." The 21st 
through 28th characters of the v52 character string are replaced by the 5th 
through the 12th characters of the v3 character string. The v3 character 
string is unaffected. In other words, -move- has the form: 

move string 1 ,start1 ,string2,start2,#characters moved 

If the number of characters to move is not specified, one character will be 
moved. 

Here is an example of the use of -move-. Suppose the student types 
"x+4y = y-3", and we want to convert this into the form "x+4y-(y-3)" 
before using -store- on it. Assume "str" has been defined: 

arrow 
putd 
storea 
ok 

{

move 
judge 
loada 
store 
ok 

1812 
.=.-(. 
str,jcount 

')',1 ,str,jcount+ 1 
continue 
str,jcount+1 
result 

$$ x+4y=y-3 
$$ x+4y-(y-3 

$$ to do regular -move­
$$ x+4y-(y-3) 
$$ to do judging -Ioada-

write Subtracting the right side of 
your equation from the 
left side gives <{s,result». 

In the -move- command the parenthesis within single quote marks, ,)" 
means a character string one character long consisting of a right parenthe­
sis. Similarly, 'dog' would denote a character string consisting of d,o, and 
g. Character strings up to ten characters in length may be described this 
way, using single quote marks. The -move- command shown above 
moves the first character of 'r, which is just a right parenthesis, to the 
(jcount+ l)th character position in "str". This effectively appends a right 
parenthesis to the student's character string (as modified by the -putd-). 
The -loada- command moves the final character string into the judging 
copy so that -store- can operate on it. Note carefully the switches from the 
judging state to the regular state and back again. 



MORE ABOUT JUDGING 

The -search- command is used to look for occurrences of specific 
character strings. It has the form: 

search ~tring1 ,!ength1,,~tring2,!ength~'Sjtart2,retur\ 

. ~h . / I . strIng soug t string return ocatlon 
to look 
through where to 

start 

Suppose we use -storea- to place the unaltered student response 
"x+4y=y-3" in "str,jcount". Then use: 

search '=',1 ,str,jcount, 1 ,charnum 

look rc;;-~ T \ ~ 
= sign string return location 
(string 1 to look 
character through 
long) start at 

beginning 
of string 

This -search- command will set the variable "charnum" to 5, since the 
equal sign is the 5th character in "x+4y=y-3". If the search is unsuc­
cessful, "charnum" is set to -1. As further illustration of -move- and 
-search-, let's rewrite our earlier sequence without the -putd-: 

arrow 1812 
storea str,jcount 
ok 
search '=',1 ,str,jcount, 1 ,charnum 
* Now make room for the -( : 
move str,charnum +1 ,str,charnum +2,jcount-charnum 
*Next insert the -( : 
move ' -(', 1 ,str,charnum,2 $$ move 2 characters 
* Append the) : 
move '}',1,str,jcount+2 
judge continue 
loada str,jcount+2 
store result 
ok 

161 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

162 

The -search- finds the equal sign. The first -move- moves the latter part of 
the string to make room for the insertion of '-C. The second -move­
makes the insertion which overwrites the characters (=y) which were 
there originally. The third -move- appends the T. Normally, the -search­
would be followed by a "goto charnum,noeq,x" to take care of the case 
where the student did not usc an equal sign, in which case "charnum" 
would be -1. 

The single quote marks can be used to specify character strings up to 
ten characters long. Longer character strings can be placed in variables 
with a -pack- command: 

pack v11,v3,abcdefghijklmnopqrstuvwxyz 

. ~ ~h strrng location c aracter count 

This packs a character string 26 characters long into vII and following 
variables. The character count (26 in this case) is placed in v3. Since each 
variable holds ten characters, v 11 and v 12 will be full while v 13 will have 
the last six characters. The -pack- command might be considered analo­
gous to -storea-, since both place character strings in variables. In the case 
of -storea-, the total character count can be gotten from the system­
defined variable "jcount". Here is another example: 

showa v12,v1 

This will display "H2S04 " on the screen. The character count in vI will 
be ten, including three shift codes and two subscripts. The character 
string H 2S04 is actually composed of shift, h, subscript, 2, shift, s, shift, 
0, subscript, 4. The character count portion of a -pack- command can be 
left blank, as in "pack v 12"dog", the result of which could be displayed 
later with the statement "showa vI2". It is possible to embed "show" 
commands in a -pack- statement: 

pack string,count,There are $«s,total» left. 

There is also a conditional form, -packc-, analogous to -writec-: 

packc cond,string,count,dog,cat,horse,cow 

/ ./ I J t 
conditional -1 0 1 ;?:2 
expression 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



MORE ABOUT JUDGING 

There are other string-oriented commands. For example, -clock- will 
get the time, -date- gets today's date, -name- gets the (I8-character) name 
the student is registered under, and -course- gets the course the student is 
registered in. These commands are used in the following illustration: 

name v1 $$ v1 and v2 for name 
course 
clock 
date 
write 

v3 
v4 
v5 
Hello! Your name is«a,v1,18». 
You are registered in «a,v3». 
The time is «a,v4». 
The date is «a,v5». 

Suppose the student is registered as "sam nottingham" in a course 
"french4." It is 10:45:37 PM (22:45:37 on a 24-hour clock) on June 3, 
1974. The student will receive this display: 

Hello! Your name is sam nottingham. 
You are registered in french4. 
The time is 22.45.37. 
The date is 06/03/74. 

All of these commands, -namc-, -course-, -clock-, and -date-, simply place 
the requested character string in the specified variable for use in a 
-showa-. 

The -clock- command produces a character string. In addition, there 
is a system variable "clock" which may be used in calculational expres­
sions. It holds the number of seconds of a daily clock to the nearest 
thousandth of a second, and is convenient for calculating the amount of 
time spent in a section of a lesson. 

The -date- command also produces a character string. There is also a 
-day- command which produces a number corresponding to the number 
of days elapsed since January 1, 1973. This number of days and fraction 
of a day is accurate to one-tenth of a second. 

The TUTOR judging commands offer a great deal of power. We have 
seen that the judging commands -bump- and -put- together with the 
regular string-oriented commands -move-, -search-, and -pack- can be 
used to change an otherwise intractable response into a form which can 
be handled with TUTOR judging commands. This is a useful scheme as 

163 

Bruce
Rectangle



The TUTOR Language 

164 

long as only minor modifications are required. However, if major 
modifications of the response are required in order to be able to use 
TUTOR judging facilities, it is usually simpler to "do your own judging." 
That is, get the student's response with a -storea- and then analyze it with 
string-oriented commands, together with the additional calculational 
machinery described in Chapter 9. You might not even want to use the 
built-in marker features of the -arrow- command, with the associated 
returns to the -arrow-, when there is a "no" judgment. In such circum­
stances you might write a subroutine to be used in place of -arrow­
commands, which merely collects the student's response: 

unit 
arrow 
storea 
specs 
ok 
endarrow 

arrow(apos) 
apos 
sstr ,scnt¢::jcou nt 
nookno 

Instead of writing "arrow 1815" with associated judging commands 
you would then write: 

do arrow(1815) 
calc,move,etc. to do your own judging 

Naturally, this course of action is advisable only if you are trying to 
analyze responses which have a form very different from those classes of 
responses which can be handled well by TUTOR judging commands. 

Catching Every Key: -pause-, -keytype-, and 
-group-

Occasionally, it is useful to process individual keypresses without 
waiting for a NEXT key. We have already discussed such typical 
examples as moving a cursor and choosing a topic from an index. These 
examples used a "long 1" with an -arrow- in order to catch each 
keypress. There is another way to do this, involving the -pause- command 
which was introduced in Chapter 2 in connection with creating dis­
plays, particularly timed animations. As was pointed out in the discus-

Bruce
Rectangle



MORE ABOUT JUDGING 

sion of the -jkey- command in the present chapter, the system variable 
"key" contains a number corresponding to the most recent key pressed by 
the student. For example, if the student presses the letter "d", the system 
variable "key" will have the numerical value 4 (since d is the 4th letter in 
the alphabet). Putting these notions together, we have the following kind 
of structure: 

write Press "d", please. 
pause 
writec key¥4,You didn't press d.,Good! 

The blank -pause- statement ("blank" in the sense of having no tag) 
causes TUTOR to wait for the student to press a key. Any key will cause 
TUTOR to move past the -pause- to the next statement. 

In the example shown, the -pause- is followed by a -writec- condi­
tional on "keY=F4". This -writec- can be written in more readable form by 
replacing the "4" with a "d": 

writec key#"d",You didn't press d.,Good! 

Enclosing the d with (double) quote marks is taken in calculational 
expressions to mean the number 4. Similarly, (v3¢o"z") will assign the 
value 26 to v3. If the student presses 0 or 1, "key" will have the numerical 
value 27 or 28 respectively. That is, the 26 letters are followed by the 
numbers 0 through 9, then come various punctuation marks. If the 
student presses the plus key, "key" will have the numerical value" +", 
which happens to be 37. 

If the student presses a capital D, "key" will have the value 64+ "d", 
or 68. The shifted or upper case letters have "key" value 64 greater than 
the corresponding lower-case letters. Caution: some common keys such 
as parentheses have key numbers smaller than 64 despite requiring the 
shift key to type them. The most commonly used characters (lower-case 
letters, numbers, and common punctuation marks) have key numbers less 
than 64, independent of whether they are typed using the shift key. As for 
the function keys (NEXT, BACK, HELP1, etc.), we have seen (in 
connection with the -jkey- command) that the corresponding key num­
bers are given by next, back, help1, etc., as in: 

goto key=help1,yes,no 

No quote marks are used for the function keys. 
A more convenient way to determine which key has been pressed is 

to use a -keytype- command. Consider a cursor-moving procedure: 

165 



The TUTOR Language 

166 

define 
unit 
pause 

~keytype 
goto 

cales 

num=v5,x=v1,y=v2,dx=10,dy=10 
cursor 

num,d,e,w,q,a,z,x,c 
num,cursor,x 

num-1,y¢=y,y+dy,y+dy,y+dy,y,y-dy,y-dy,y-dy 

The -keytype- command searches through the listed keys (d, e, w, q, a, Z, 

x, and c in this case) and, similar to the -match- command, sets "num" to 
-1 (if the key is not found in this list) or to 0, 1,2,3, etc. (if it is found). If 
the student presses d, "num" will be set to 0; if the student presses c, 
"num" will be 7; and if he or she presses D, "num" will be set to -1. The 
-goto- statement effectively causes all unlisted keys to be ignored. 

Note that no quote marks are used in specifying keys in a -keytype­
command. Capital letters and function keys may also be listed: 

keytype v3,a,A,b,B,next,data,timeup 

While the -keytype- command is most often used in conjunction with a 
-pause- command, it can also be used in association with an -arrow­
command or any time that you want to find out which key was pressed 
most recently. The function key timeup is one generated by TUTOR 
when a timing key is "pressed" as the result of an earlier -time- command 
or timed -pause- command (see Chapter 2). 

Just as the -list- command can be used to specify a set of synonomous 
words and numbers for use in -answer- and -match-, so there is a -group­
command available for specifying synonomous keys for use in a 
-keytype- command: 

define 
group 

keynum =v23,algkey=v24 
algebra,x,y,z 

keytype keynum,a,b,algebra,help 

11 1 1 o 1 2 3 

If the student presses any of the keys x, y, or z, the variable "keynum" 
will be assigned the value 2. An additional -keytype- command can be 
used to separate members of a group: 

Bruce
Rectangle



MORE ABOUT JUDGING 

keytype keynu m,a,b,algebra,help 
goto keynum,none,ua,ub,alg,somehelp 

unit alg 
keytype algkey,x,y,z 

Some particularly useful -group- definitions are built-in. Without speci­
fying these definitions with your own -group- commands, you can (in a 
-keytype- command) refer to these groups in the following ways: 

alpha 
numeric 
funct 

all 52 lower-case and upper-case letters 
o through 9 
function keys (next,help,etc.) 

An example of the use of these built-in groups might be "keytype 
v45,funct,a,b,c". You can also use previously defined or built-in groups to 
define new groups: 

group mine,a,b,c,help 
group ours,mine,d,e,f 
group all,A,B,C,ours,numeric,funct 

It is important to note that if you use a -pause-, the key pressed will 
not cause the associated character to appear on the student's screen. You 
are in complete control. You may write something on the screen or not, as 
you choose. Only if you use an -arrow- will the standard key display take 
place (with the associated ERASE and other standard typing features 
available). Similarly, if you press HELP, you will not automatically 
branch to a unit specified by a previous -heIp- command, because a blank 
-pause- gives you every key, function key or not. 

There is a variant of the -pause- command which is usually more 
useful than the blank -pause-. You can define which keys are to be 
accepted, and all other keys will be ignored: 

next umore 
help discuss 
data tables 

(Continued on the next page.) 

167 

Bruce
Rectangle



The TUTOR Language 

168 

pause keys=d,D,next,term,help,help1 

Any key not listed here is completely ignored, as though the student had 
not pressed it. Of the function keys listed, the HELP key will take the 
student to unit "discuss", since you have already specified what you want 
the HELP key to do. Note that this is not possible with a blank -pause­
which catches all keys. Similarly, what the TERM key will do has been 
predefined (the student will be asked "what term?"). But the DATA key 
will be ignored since it is not listed in the -pause- statement, and the 
student cannot reach unit "tables" with the DATA key until he or she has 
passed the -pause-. Pressing d, D, NEXT, or HELP1 will take the student 
past the -pause-. The NEXT key is rather special here in that the 
preceeding specification "next umore", unlike "help discuss", tells 
TUTOR what to do when the present main unit has been completed. 
Thus, pressing NEXT here takes us past the -pause- instead of branching 
us immediately to a different unit as HELP does. 

You may prefer notto ignore the HELP key nor to use it to access unit 
"discuss". In this case, the statement "help discuss" must follow the 
-pause- statement, or a "help q" must precede the -pause- in order to 
quit specifying a help unit. 

Touching the Screen 

Most PLATO terminals have "touch panels" which make it possible 
for the student to respond by touching the screen. For example, a 
language drill might show the student pictures of various animals and ask 
the student to point to the dog. You need a way to tell at which part of the 
screen the student pointed. This is most easily done with -pause- and 
-keytype- statements, as in the following example: 

pause keys=touch 
keytype num,touch(1215),touch(100,200) 

The first statement, using the built-in group "touch", tells PLATO to 
expect a touch input. The -keytype- statement will set "num" to 0, if the 
student touches as close as possible to screen location "1215"; will set 
"num" to 1, if the student touches near location" 100,200"; and will set 

Bruce
Rectangle



MORE ABOUT JUDGING 

"num" to -1, if the student touches the screen elsewhere. 
How close the student must be to location "1215" or location 

"100,200" depends on the resolution or fineness of the touch panel. Most 
touch panels cover the screen with a 16 by 16 grid of square touch areas. 
Each square is 32 dots by 32 dots in size, or 4 characters wide by 2 
characters high. If the square touched by the student overlaps location 
"1215" or location "100,200", TUTOR will consider that the student has 
pointed at that place. 

You can define larger regions of the screen. For example: 

-keytype num,touch( 1215;8,4},touch( 100,200 ;64,32) 

In this case, the -keytype- statement will set "num" to 0 if the student 
touches somewhere within a box whose lower left corner is at "1215", 
whose width is 8 characters, and whose height is 4 characters. The 
variable "num" will be 1 if the student touches within a box whose lower 
left corner is at fine-grid location "100,200", whose width is 64 dots, and 
whose height is 32 dots. The touch-panel square touched by the student 
must overlap one of your rectangles in order for TUTOR to consider that 
a rectangle has been touched. 

You can abbreviate "touch" by "t" and write "t(1215)" instead of 
"touch( 1215)". 

In addition to the pause-keytype combination, you can also use a 
-touch- judging command with an -arrow-. See the PLATO on-line "aids" 
for details. 

Summary 

In this chapter we have discussed, in some detail, the marker 
properties of the -arrow- command. The -arrow- command as we have 
seen serves as an anchor point which TUTOR clings to until the -arrow­
is satisfied by an "ok" judgment (at which point a search is made for 
additional -arrow- commands). We looked at some cases involving the 
repeated execution of -join- in regular, judging, and search states, and of 
the non-execution of -goto- in the judging and search states. We have also 
looked at other side-effects of the -arrow- command, including initializa­
tions associated with -size-, -rotate-, -long-, -jkey-, and -copy-. 

In addition, we have seen how the -bump- and -put- commands can 
be used to change a student's response into a form more easily handled by 
the standard judging commands. This is particularly useful when only 
slight changes are necessary. 

In Chapter 7 we saw how to store numeric and alphanumeric 

169 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

170 

responses for later processing (-store- and -storea-). These capabilities 
make it possible to "do your own judging" in those cases where the 
standard judging commands are not suitable. The basic TUTOR judging 
commands provide a great deal of power but cannot handle all possible 
situations. Fortunately, there is always the possibility of performing 
calculations on a stored student response, which means that TUTOR is 
open-ended in its judging power. The regular commands -search- and 
-move- can be used to manipulate stored character strings. (In Chapter 10 
you will find discussions of "segments" and "bit manipulations" which 
permit you to use the -calc- command to perform additional operations on 
character strings.) We have also discussed how to handle input from the 
student by collecting each key with a -pause- command, then using 
-keytype- (aided by -group-) to make decisions on a key-by-key basis. We 
have learned, also, how to use similar techniques to determine where the 
student had touched the screen. 

Bruce
Rectangle



Additional Display Features 

More on the -write- Command 

It should be pointed out that the -at- command not only specifies a 
screen position for subsequent writing but also establishes a left margin 
for "carriagc returns" (CR on the keyset), much like a typewriter. Upon 
completion of one line of text, the next line will start at the left margin set 
by the last -at- command. There are carriage returns implicit in "contin­
ued" write statements: 

at 1215 
write Now is the 

time for all 
good men to 
come home. 

The "at 1215" establishes a left margin at the 15th character position so 
that each line will start there. This example will produce an aligned 
screen display similar to the appcarance of the tags of this continued 
-write- statement. 

The setting of a margin by -at- has an unusual side effect. Consider: 

at 2163 
write The cow jumped. 

9 

171 

Bruce
Rectangle



The TUTOR Language 

172 

This will put the following display on the screen: 

Th 
e 
co 
w 
ju 
mp 
ed 

This unusual display is caused by the setting of the left margin at 
character position 63, just two characters shy of the right edge of the 
screen. When a -write- would go past the right edge of the screen, 
TUTOR performs a carriage return to drop down one line, starting at the 
left margin. An -arrow- also sets a left margin with respect to the student 
typing a long response which would pass the right edge of the screen. 
Further typing appears on the next lower line starting at the margin set by 
-arrow-. 

Occasionally, it is useful to position something on the screen without 
setting a margin. This can be done with an -atnm- command ("at with no 
margin"). The statement "atnm 1215", is equivalent to "at 1215", but 
does not change the current margin setting. 

It is important to understand that writing characters on the screen 
automatically advances the terminal's current screen position. Suppose 
we have consecutive -write- statements: 

at 712 
write horses 
write and cows 

This sequence will display "horseand cows" all on line 7. The first -write­
("horses") advances the terminal's screen position from the 712 specified 
by the preceding -at- to 712+6=718 (there being 6 characters in the text 
"horses"). Without an explicit -at- to change this, the second -write- ("and 
cows") starts at position 718. Note that: 

at 712 
write horses 

would give a different display: 

and cows 

horses 
and cows 

Bruce
Rectangle



ADDITIONAL DISPLAY FEATURES 

because the "continued" -write- statement implies carriage returns. 
TUTOR keeps track of the current screen position in a system 

variable named "where". For example: 

at 
write 
at 

712 
horses 
where+305 $$ "where" is 712+6=718 here 

write and cows 

will produce the display: 

where 

horses~ 
I 
I 

3 lines : where+305 

i\ 
1 ..... and cows 

( ) 

5 characters 

The statement "write horses" leaves the screen position at 712+6=718, 
and the system variable "where" therefore has the value 718. When you 
then say "at where+305" this is equivalent to saying "at 718+305" or 
"at 1023". 

There are many uses of this "where" system variable. Here is another 
example: 

This will appear as: 

at 1215 
write What is your name? 
arrow where+3 

What is your name? ~ Sam 

The arrow has been positioned 3 characters beyond the end of the -write­
statement's display. 

The positioning information is useful with other display commands 
as well. Consider this: 

173 

Bruce
Rectangle



The TUTOR Language 

174 

at 815 
write Look at this! 
draw where;815 

This will display underlined text: 

Look at this! 

This is due to the fact that upon completion of the -write- statement, 
"where" refers to the beginning of the next character position just after 
the exclamation point. We simply draw from there back to the starting 
point. This form of the -draw- statement is so common that a concisc form 
is permitted. For example, "draw ;815" is equivalent to 
"draw where;815". Either form will draw a line or figure starting at the 
current screcn position. This is particularly useful in constructing a 
graph (by connecting the new point to the last point with a line). The 
point reached with a -draw- (or any display command) will be the new 
screen position and may be referred to through the system variable 
"where", which is kept up to date automatically by TUTOR. 

There are fine-grid system variables "wherex" and "wherey" which 
correspond exactly to the coarse-grid "where". The position 
"where+305" is equivalent to "wherex+(5x8),wherey-(3x 16)" because 
a character space is 8 dots wide and 16 dots high. The minus sign is 
present because, in coarse grid, line 4 is below line 3, whereas in fine grid 
dot 472 is above dot 47l. 

Superscripts and subscripts may be typed either in a locking or 
nonlocking mode. To type "1023" you can either: (a) press 1, press 0, press 
SUPER, press 2, press SUPER, press 3 (non-locking case); or (b) press 1, 
press 0, press shift-SUPER (that is, hold down the shift key while 
pressing SUPER), press 2, press 3. To get down from a locked superscript 
you type shift-SUB (locking subscript). Notice that in typing superscripts 
or subscripts the SUPER and SUB keys are pressed and released before 
typing the material to be moved up or down. You do not hold these keys 
down while typing, unlike the shift key used for making capital letters. 

It is possible to overstrike characters to make combinations. The 
symbol ",," can be made by typing v, backspace, SUPER, minus sign. 
This will superimpose a raised minus sign above the v. The backspace is 
typed holding down the shift key while hitting the wide space bar at the 
bottom of the keyset. Similarly, "horse" can be typed by typing "horse" 
followed by five backspaces and five underline characters. Note that these 
superpositions of characters won't work in "mode rewrite", where a new 
character is written on the screen. In mode rewrite, the last example 
would show up as " ", the "horse" having been wiped out by 
the characters whose only visible dots are the low, horizontal bars. 

Bruce
Rectangle



ADDITIONAL DISPLAY FEATURES 

Extensions to the Basic Character Set 

We've seen examples of lower-case and upper-case characters, num­
bers, punctuation marks, superscripts, and subscripts. What if you need 
special accent marks, or an unusual mathematical symbol, or the entire 
Cyrillic alphabet for writing Russian? It is important that you be able to 
write text on the screen using the special symbols of your particular 
subject area. In addition, it is possible to use special characters to display 
small, intricate figures whose display would be slow and cumbersome if 
done with -draw- commands. 

The PLATO terminal has 126 built-in characters (including those 
used so far) and storage for 126 additional characters which can be 
different in every lesson. For example, Russian lessons fill this additional 
character storage space with the Cyrillic alphabet, whereas there is a 
genetics lesson which fills the storage area with fruitfly parts which 
permit displaying flies by writing appropriate characters at appropriate 
positions on the screen. We will learn how to access all 252characters 
(126 which are built-in and 126 which can be varied). 

The 126 built-in characters include many useful symbols which do 
not appear on the keyset (since there aren't enough keys). This is due to 
the fact that the keys on the right of the keyset are reserved for various 
important functions (ERASE, BACK, STOP, etc.). In order to access the 
"hidden" characters it is necessary to first strike the ACCESS key 
(presently the shift-D key) and then to strike a second key. Like SUPER 
and SUB, the ACCESS key is not held down but struck. You can press 
ACCESS, then "a" to get a Greek alpha; ACCESS-b for beta; 
ACCESS-m for mu; ACCESS-= for =t-; and also ACCESS-<or> for 
:5: and ~. It is useful to try ACCESS followed by every key (or shifted 
key) at a terminal to find approximately 36 useful hidden characters. In 
most cases, there is a mnemonic connection between the key which 
follows the ACCESS key and the hidden character which results, such as 
*- being ACCESS-=. ACCESS followed by comma gives the symbol 1 
mentioned in the discussion of the -writec- command in Chapter 6. 
ACCESS-0 and ACCESS-1 give the symbols « and t> used for embedding 
-show- commands in -write- statements. (In the discussion of "micro 
tables" later in this chapter, we will see that the MICRO key is equivalent 
to the ACCESS key, under normal circumstances.) 

You can get at the "alternate font" of 126 additional, modifiable 
characters by pressing the FONT key (the shifted MICRO key), then 
typing regular keys, which will produce characters from the alternate 
font. Which characters appear depends on what character set has been 
previously loaded into the terminal. The FONT key toggles you between 
the standard built-in font and the alternate font (you stay in the alternate 

175 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

176 

font until you strike FONT to return to the standard font). It is, therefore, 
not necessary to strike FONT for each symbol (unlike the way ACCESS 
works). 

Here is an example of the use of a special character set: 

at 
write 

912 
Now LOADING CHARACTER SET. 
Please be patient - loading 
take~ about 17 seconds. 

charset char~ets,ru55ian 
erase $$ full-5creen erase to remove mes~age 
unit intro 
at 9.0"5 

write The Russian word KapaH~aw mean~ pencil. 

Fig. 9-1. 

The -charset- statement sends to the terminal the character set specified in 
the tag (character set "charsets,russian" in this case). Character patterns 
are transmitted to the terminal at a rate of 7.5 character patterns per 
second, so a full 126-character set will take about 17 seconds to send. 
Precede the -charset- command with a -write- statement to explain this 
delay to the student, so that he or she will not think that something is 
wrong or broken! The full-screen -erase- will remove the message upon 
completion of the loading process. Once the character patterns have been 

Bruce
Rectangle



ADDITIONAL DISPLAY FEATURES 

loaded into the terminal, it is possible to write Russian text on the 
student's screen at the same high speed as English, 180 characters per 
second, which corresponds to a reading speed of almost two thousand 
words per minute. 

TUTOR keeps track of which character set has been loaded into the 
terminal and skips a -charset- statement if loading is not required. In the 
above example, TUTOR would rush right through the message, skipping 
the -charset- and erasing the screen. There would not be the 17 -second 
delay which occurs if the Cyrillic characters have not been loaded. 

The -write- statement in unit "intro" is created by: 
1. typing "write The Russian word"; 
2. striking the FONT key to select the alternate font; 
3. typing the keys k, a, r, a, n, d, a, w (which 

causes KapaH,lI.aW to appear) 
4. striking the FONT key to toggle back to the standard font 
5. typing II means penciL" 

Each character in the alternate font is associated with a key on the keyset. 
For example, the creators of the "russian" character set chose to associate 
the Cyrillic" .D. " with the "d" key because of the phonetic similarity of 
these two letters. Similarly, the Cyrillic "p" and "H" sound like the "r" 
and "n" letters with whose keys they are associated. Just as accessing 
some of the 126 built-in characters requires the ACCESS key, so a full 
126-character alternate font will also necessitate the use of the ACCESS 
key to reach some of the characters. 

If the student is to respond at an -arrow- with a Russian response, he 
or she must hit the FONT key in order to do so. Usually it is preferable to 
precede the first judging command with the statement "force font", 
which essentially hits the FONT key for the student. The student merely 
uses the regular typing keys, but the typing appears in the alternate font. 
Some languages, including Arabic, Hebrew, and Persian, are written 
right-to-Ieft instead of left-to-right. For these languages use a 
"force font,left" and the student's typing will automatically go left­
wards from the -arrow- in the alternate font. 

The "initial entry unit" (ieu) 

You may have noticed that the first few statements of the previous 
example (which write a message, load a character set, and then erase the 
screen) are not preceded by a -unit- statement. This is intentional. 

177 



The TUTOR Language 

178 

TUTOR statements which precede the first -unit- statement ("unit intro" 
in this case) constitute an "initial entry unit" which is performed 
whenever a student enters the lesson. The "initial entry unit" (or "ieu") is 
the logical place to put various kinds of initializations, such as a -charset­
statement to load characters which will be used throughout the lesson. 
Although -define-, -vocabs-, and -list- statements are not actually executed 
(they are only instructions to TUTOR on how to interpret -calc-, 
-concept-, and -answer- statements in preparing a lesson for student use), 
they can also be placed in the "ieu" at the beginning of the lesson, for the 
sake of readability. 

The importance of the "ieu" lies in the fact that it is performed no 
matter where the student starts within the lesson (even if the student does 
not start at the first unit statement). TUTOR is capable of keeping track of 
a student's place within a lesson, so that a student who leaves without 
finishing a lesson is able to restart the next day where he or she left off. It 
is important, in the restarting process, to load the appropriate character 
set. The restart procedure can not be executed properly if the -charset­
statement comes after the first -unit- statement (since the student will not 
go through the first part of the lesson again). 

Suppose the student is to restart in unit "middle", which looks like 
this: 

unit middle 
next mid2 

The "ieu" is utilized in such a way that TUTOR acts as though the "ieu" 
were done at the beginning of the restart unit: 

unit middle 
(do "ieu") 
next mid2 

This pseudo-do is the reason for following the -charset- statement with a 
full-screen erase. We don't want the "loading" message to interfere with 
the display to be created by unit "middle". 

Smooth Animations Using Special Characters 

The -charset- command is not limited to its use with foreign 
alphabets. Special characters are often used to create pictures: 

at 1319 
write This~ uses special characters! 



ADDITIONAL DISRLAY FEATURES 

The car is composed of several adjacent characters. Because characters 
can be drawn very fast (180 per second), dramatic animations are 
possible: 

mode rewrite 
do drive,x¢=100A00 
* 
unit 
at 
write 

drive 
x,200 
~ 

The car advances one dot at a time. If the car characters are designed in 
such a way as to leave a vertical column of blank dots at the back of the 
car, the "rewrite" mode will insure that the advancing car simultaneously 
erases its old position. If two columns are left blank, the car could be 
advanced two dots at a time and still completely wipe out the previous car 
display. This type of animation can run as fast as twenty or thirty moves 
per second, which creates the illusion of a smoothly moving object. 

For the built-in characters there is an expandable and rotatable (but 
slow) line-drawn form available through the use of -size- and -rotate-, but 
these commands have no effect on charset characters. If a larger or rotated 
car is needed, it can be constructed with -draw- and -circle- commands, 
built up out of additional special characters, or produced with "lineset" 
characters. A lineset is like a charset, but the characters are made up of 
lines instead of dots. If "size" is not zero, and a lineset is in effect, 
alternate-font text is displayed as line-drawn characters which can be 
expanded and rotated. 

Creating a New Character Set 

Figure 9-2 on the following page demonstrates how a special 
character is designed at a PLATO terminal. The author moves the cursor 
on an 8 x 16 grid to specify which dots are to be lit. The author can 
inspect "in the small" the appearance of the character he designs "in the 
large". The letter shown at the top of the page is the key with which this 
character will be associated when typing in the alternate font, just as 
character ".D." is associated with key "d" in "charset russian". The 
character pattern is stored in such a way that the author can (at any later 
time) recall the pattern and modify it. A character set can contain up to 
126 special characters or as few as one or two characters. 

179 



The TUTOR Language 

180 

Character Des i gn 

coo 0 0 0 
o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

000000 

1--+_ --~ 0 -1---1-
. __ 1-1- O~I-~ -f-~-'+'-
1-+-+--;--:°+°+-1. __ 1_ 

o 0 

t 2. 

"+" move point mode 
"0" 5tor.~ point mode 

I~emove po 1 nt mode 
1 inspect 

"R" restore 

This T is your character 

Pre":.::; -BACK- to fonnat l!Jhen you are done 
Press -HELPt- to e)qt without formatlng 

Fig. 9-2. 

Figure 9-3 shows how an author can create several 8 x 16 characters 
at once to be used together or separately. This option is particularly 
helpful when designing character-mode pictures. 

J) o 0(,1" "nl.:1., I II U,o''''~'' 
'

-j- -- Ij 1- I \- I 

, I '11 II! II 'II i 11';;;:[ 
, 
e' 

("!'~ 

- )11 Bn'IJ,," 

I 11 I II, ,Ij "',c - -" 
I 

Fig. 9-3. 



ADDITIONAL DISPLAY FEATURES 

Your own character set will be stored in an electronic storage area 
assigned to you. Such storage areas are called "lesson spaces" because 
they mainly hold TUTOR statements which describe a 'lesson to be 
administered to students by PLATO. Your lesson space might be called 
"italian3" and it is by this name that you refer to the lesson space when 
you want to look at the TUTOR statements or change them. Within this 
lesson space you can also have one or more character sets, which you will 
have named. Suppose in lesson space "italian3" you have stored a 
character set named "rome". In this case, the TUTOR statement used to 

·transmit this character set to a terminal is: 

charset italian3,rome 

1 \ 
lesson space character set 

The same format holds for linesets. 

Micro Tables 

It is sometimes desirable to associate a string' of several characters 
with a single key. For example, the symbol v may be produced by v, 
backspace, superscript, minus sign. It is possible to set up a "micro table" 
so that v may be produced simply by hitting the MICRO key followed by 
hitting "v". Similarly, the micro table might specify that MICRO-e 
should be equivalent to typing e, shift-SUPER, k, x, SUPER, 2, shift-SUB 
to make e kx

2
• The micro table makes possible a kind of shorthand which 

can be useful both to authors composing -write- statements and to 
students typing complicated responses. 

Like character sets, micro tables reside in lesson spaces. If lesson 
space "italian3" contains a micro table named "dante", these micros can 
be made available to students by the statement: 

micro italian3,dante 

As with -charset-, the -micro- statement should be placed in the "ieu" 
(initial entry unit). 

Figure 9-4 on the following page shows how an author defines an 
item in a micro table, by associating a string of characters with a 
particular key. Later the effect of striking MICRO followed by this key is 
identical to typing this string of characters. With a "force micro" in 
effect, the student does not even have to press MICRO. This makes it easy 
to redefine the keyboard. 

181 

Bruce
Rectangle



The TUTOR Language 

182 

Here 15 the <>ld MI(RO •.. 

Type In the new MICRO .•• 

~ e",,2 

(pres::. .3ACK tc, leave -35 Isl 

LAB :a see eyerythln~ BACK", all finlshed 

DATA" .-:hange nHcr·:· t','F'e DATAl" FUN(Tl('lN ':'F,t,l':'n 

Fig. 9-4. 

If you do not specify your own micro table, a standard one is 
provided that lets you use the MICRO key as though it were the ACCESS 
key. For example, MICRO-p gives ACCESS-p, which is 'IT. This 
means you can (and should) mention only the MICRO key to students in 
your typing directions to them. It is not necessary to mention ACCESS. 
Note, however, that ACCESS-p must be used to make a 'IT if you have 
your own micro table with a different definition for MICRO-p. 

The Graphing Commands: Plotting Graphs with 
Scaling and Labeling 

You may often want to plot a horizontal or vertical bar graph or other 
kinds of graphs to display relationships. There exists a group of TUTOR 
commands which collectively make it very easy to produce such displays. 
In particular, scaling of your variables to screen coordinates is automatic, 
as is the numerical labeling of the axes, with tick marks along the axes. 
Figure 9-5 shows some examples. 

Suppose you want a graph to occupy the lower half of the screen. The 
horizontal x-axis should run from zero to ten and the vertical y-axis from 
zero to two. Both axes should be labeled appropriately. These statements 
will make the display shown in Figure 9-6. 



ADDITIONAL DISPLAY FEATURES 

unit 
gorigin 
axes 
sealex 
sealey 
labelx 
* 
labely 
graph 
graph 
hbar 
* 
vbar 
* 
gdraw 
gat 
write 

100 

setup 
50,50 
400,150 
10 
2 
2,.5 

.5 
6,1.5,A 
8,.5,BC 
3,1.5 

4.5,1 

f _. r·~+-++++++I 

!"~--------

//' 
,/' 

;' 

/ 

./ 

. J __ +~"'_ -+---'---1 
o .:: 4 0:. ::; HI 

Stlmul'_'5 

Fig. 9-5. 

$$ x,y graph origin 
$$ lengths in dots 
$$ maximum x 
$$ maximum y 

T,:·ta.l -=.ale:::· 
1:,1"-::.:, F'p:>flts 

.... ~----~ 

$$ major mark every 2, 
minor every .5 
$$ major mark. every .5 50 

$$ x=6, y= 1.5 
$$ x=8, y=.5 
$$ horizontal bar to 
3,1.5 
$$ vertical bar to 
4.5,1 

2,.5;4,1.5;7,0 
4,2 
Top 

40(t 

Fig. '9-6. 

After specifying -gorigin- and -axes- in terms of fine-grid screen coordi­
nates, the -scalex- and -scaley- commands associate scale values with the 
end points of the axes. These scale values determine how (x,y) coordinate 
positions given in later statements will be scaled to screen coordinates. 

---

183 

Bruce
Rectangle



The TUTOR Language 

1513 

1130 

2 •• 

t •• 

The -labelx- and -labely- commands cause numerical labels and tick 
marks to appear. The statement "graph 6,1.5,A" plots an A at x=6, y=1.5 
in scaled coordinates. The -hbar- and -vbar- commands draw horizontal 
and vertical bars to the specified scaled points. The -gdraw- command is 
like -draw-, except points are specified in terms of scaled quantities. The 
-gat- command is like -at- but uses scaled quantities. 

Read the example over and try to identify in the picture what part of 
the display results from each statement. (Keep in mind that each number 
in the tags of these statements could have been a complicated mathemati­
cal expression.) 

The -markx- and -marky- commands are similar to -labelx- and 
-labely- but merely display tick marks without writing numerical labels. 
The -axes- command has an alternative form which allows for axes in the 
negative directions. (See Figure 9-7.) 

gorigin 100,200 
axes - 50,-100,300,150 

'-----,,------- '----v----' 

/ \ 
minimum x,y maximum x,y 
from origin from origin 

Fig. 9-7. 

184 

Although the commands were originally designed to make it easy to 
draw graphs, the automatic scaling features make these commands useful 
in many situations. Note, in particular, that you can move complicated 
displays around on the screen merely by changing the -gorigin- state­
ment. 

Additional graphing commands include -gvector- for drawing a line 
with an arrowhead at one end, -polar- for polar coordinates, and -lscalex­
and -Is caley- for logarithmic scales. The -bounds- command has the same 



ADDITIONAL DISPLAY FEATURES 

effect as -axes- in establishing lengths, but no axes are drawn on the 
screen (a later blank -axes- command will display the axes). The -gbox­
command is used to draw rectangular boxes easily. The -gcircle- com­
mand draws circles or, if the x- and y-scales are different, -gcircle- will 
draw an ellipse. 

Functions can be plotted very easily with the -funct- command. For 
example, "funct 5sin(2w),w¢ol,5,.02" will plot the function "5sin(2w)" 
by evaluating this function for values of w running from 1 to 5 in steps of 
.02. Note the similarity to the form of the iterative -do- statement. If there 
was an earlier "delta .02" statement, we can leave off the increment and 
simply write "funct 5sin(2w),w¢ol,5". If, in addition, we want the 
function to be plotted all the way from the left edge of the established 
axes to the right edge, we simply write "funct 5sin(2w),w". 

Summary of Line-drawing Commands: -draw-, 
-gdraw-, -rdraw-

Recall that the -draw- statement has the form: 

draw point1 ;point2;point3;etc. 

Each point in a -draw- statement may be coarse-grid (such as "1215") or 
fine-grid (such as "135,245"). Each point specification is set off by a 
semicolon in order to avoid ambiguities when mixing coarse-grid and 
fine-grid points, as in "draw 1525;1932;35,120;1525" (the first two 
points are given in coarse-grid; the third, in fine-grid; and the last point in 
coarse-grid coordinates). 

A discontinuous line drawing can be made with a single -draw­
statement by using the word "skip": 

draw 1518;1538;skip;1738;1718 

U sing "skip" in a -draw- statement means "skip to the next point without 
drawing a line." This example is essentially equivalent to: 

draw 1518;1538 
draw 1738;1718 

The only difference between these otherwise equivalent forms is related 
to the fact that the system variables "where", "wherex", and "wherey" 
are not brought up to date until the completion of the -draw- statement. 
The sequence: 

185 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

186 

is equivalent to: 

at 1319 $$ affects "where" 
draw 1518; 1538;skip; 1738;where 

at 1319 
draw 1518; 1538 
draw 1738;1319 

since during the -draw- statement "where" has the value 1319. On the 
other hand, the sequence: 

at 1319 
draw 1518;1538 
draw 1738;where 

is equivalent to: 

at 1319 
draw 1518;1538 
draw 1738;1538 

since upon completion of the first -draw- statement, the value of "where" 
is 1538. This difference between a single -draw- using "skip" and 
separate -draw- statements is sometimes useful in drawing figures relative 
to some point. 

As mentioned earlier, starting with a semicolon implies a continued 
drawing from the present screen location. The sequence: 

at 1319 
draw ;1542;1942 

is equivalent to: 

at 1319 
draw where;1542;1942 

and is also equivalent to: 

draw 1319;1542;1942 

Sometimes you have more points for a -draw- than will fit on one 
line. A "continued" -draw- can be written, with the command blank on 
succeeding lines: 

Bruce
Rectangle



ADDITIONAL DISPLAY FEATURES 

draw 1512;1542;skip;100,200; 
400,200;400,400; 
100,400; 100,200 

This will behave as though all the points had been listed on one line. 
To summarize, the -draw- statement contains fine-grid or coarse-grid 

points separated by semicolons, "skip" can be used for a discontinuous 
drawing, "where" and the fine-grid "wherex" and "wherey" are brought 
up to date upon completion of the -draw-, and starting the tag with a 
semicolon has the special meaning of continuing a drawing from the 
present screen position. 

The -gdraw- command is like the -draw- command except that points 
are relative to the graphing coordinate system established by -gorigin-, 
-axes-, (or -bounds-), -scalex-, and -scaley- (or logarithmic scales set up by 
-lscalex- and -lscaley-). Of particular value are the "skip" option and 
starting with a semicolon (for continuing a drawing). The use of "where", 
"wherex", and "wherey" in a -gdraw- statement is normally not meaning­
ful, since these system variables refer to the absolute screen coordinate 
system, not the graphing system. In the graphing coordinate system, there 
are only fine-grid, not coarse-grid points, so all points have the form 
"x,y". 

It is possible to use -draw- to draw something relative to the present 
screen position: 

at 2215 
draw wherex+25,wherey-75;wherex+200,wherey+150 

(Remember that "wherex" and "wherey" do not change until the comple­
tion of the -draw- statement.) There is an -rdraw- command ("r" for 
"relative") which makes such drawings simpler. The example just shown 
can be written: . 

rorigin 
rdraw 

2215 
25,-75;200,150 

Each point of an -rdraw- is taken to be relative to an origin established 
with an -rorigin- command. 

The -rdraw- command is particularly useful for applications such as 
writing the same Chinese characters at different places on the screen. For 
each character, make a subroutine involving one or more -rdraw- state­
ments. The characters can be positioned with -rorigin- statements: 

187 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

188 

rorigin 
do 
rorigin 
do 

400,400 
chin1 
400,300 
chin2 

etc. 

Or you might include the -rorigin- statement in the character subroutines: 

do chin1(400,400) 
do chin2(400,300) 

In this case each subroutine has a form like this: 

unit 
rorigin 
rdraw 

chin1(a,b) 
a,b 
-75,30;75,30;etc. 

Unlike -draw-, the -rdraw- command is affected by preceding -size­
and -rotate- commands. Your Chinese characters can be enlarged and 
rotated: 

size 
rotate 
do 
do 

3,5 $$ 3 times the width, 5 times the height 
45 $$ rotated 45 degrees 
chin1 (400,400) 
chin2(400,300) 

(Another way to handle such things as Chinese characters is with 
-lineset-.) Figure 9-8 shows a design created with the following com­
mands: 

rorigin 
do 
* 
unit 
rotate 
rdraw 

250,250 
figure,a¢o0,360,15 

figure 
a 
-50,0;50,0;0,200;-50,0 

The -rotate- command affects -rdraw- even with "size 0", even though 
-write- is not rotated in size 0. (The -write- statement is unaffected in 
order to facilitate normal text operations.) As far as -rdraw- is concerned, 
size 0 is equivalent to size 1. As far as -write- is concerned, size 0 means 
"write text at 180 characters per second, unrotated", whereas size 1 means 
"write line-drawn text at 6 characters per second, rotated". 

Bruce
Rectangle



ADDITIONAL DISPLAY FEATURES 

Fig. 9-8. 

Note that -rdraw- and -size- are essentially reciprocal to -gdraw- and 
-scalex-. In the case of -rdraw-, a drawing gets bigger when -size­
specifies a larger size. But, specifying a larger number in a -scalex­
command implies that the same number of screen dots (given by -axes-) 
will now correspond to larger (scaled) numbers in a -gdraw-. This means 
that a larger -scalex- implies a smaller -gdraw- figure. Note that -gorigin­
affects -gdraw- the same way that -rorigin- affects -rdraw-. 

There is a complete set of "relative" commands for making displays 
relative to an origin specified by -rorigin-, and affected by -size- and 
-rotate-. Here is a summary: 

"ABSOLUTE" "RELATIVE" (-size-) "GRAPHING" (-scalex·,-scaley-) 

at 
atnm 
draw 
box 
vector 
circle 

rorigin 
rat 
ratnm 
rdraw 
rbox 
rvector 
rcircle 

gorigin 
gat 
gatnm 
gdraw 
gbox 
gvector 
gcircle 

Note that -rcircle- will draw an ellipse if the x- and y-sizes are different (as 
in "size 1,4", for example). 

189 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

190 

The "halfcirc" subroutine of Chapter 4 could be conveniently 
rewritten using relative commands: 

unit 
at 
circle 
draw 

"ABSOLUTE" 
halfcirc 
X,Y 
radius,0,180 
x-radius,y;x+radius,y 

unit 
rorigin 
rcircle 
rdraw 

"RELATIVE" 
halfcirc 
x,y $$ sets rorigin and "rat O,O" 
radius,0,180 
- radius,y; radius,y 

It is important to note that the relative specifications set by -rorigin-, 
-size-, and -rotate-, as well as the graphing specifications set by -gorigin-, 
-bounds-, -scalex- (or -lscalex-) and -sealey- (or -Iscaley-) carry overfrom 
one main unit to another. If you would prefer to have these parameters set 
to some standard values at the beginning of each main unit, simply do the 
initiaIizations in an -imain- unit. (Remember that the -imain- command 
allows you to specify a unit to be performed every time a new main unit is 
started.) 

How do you decide which of the three sets of display commands to 
use? If you want to rotate a drawing, you must use relative commands, 
because the absolute and graphing commands are unaffected by the 
-rotate- command. If rotations are not involved, just use whichever 
commands seem most convenient at the moment. Absolute commands 
may be useq quite often since they are the simplest and easiest to use. 
The graphing commands are certainly best for drawing graphs of 
functions, but they are also useful whenever it is convenient to think of 
your drawing in terms of numerical scale factors. Graphing commands 
are also needed if you use polar coordinates (invoked with the -polar­
command). Sometimes you may use all three sets simultaneously. For 
example, in one of this author's lessons, the most convenient way to 
produce the screen display was to give instructions at the bottom of the 
screen using absolute commands, draw figures scaled in centimeters 
using graphing commands, and superimpose a movable box on the 
(absolute) instructions by means of relative commands. 

The -window- Command 

Sometimes it is useful to specify a "window" through which 
drawings are viewed. Parts of a figure extending outside the window are 
not drawn. A rectangular window is specified by giving the lower left and 
upper right corners of the desired window: 



ADDITIONAL DISPLAY FEATURES 

window 100,200;400,300 , , '---V-----' 

~. . \ 
one corner opposIte corner 

The corners could also be given in coarse-grid coordinates, as in 
"window 1524; 1248". 

Drawings constructed from the various -draw- commands and 
-circle- commands are affected by a preceding -window- command. 
Line-drawn text (size non-zero) produced by -write-, -writec-, -show-, 
etc., will also be windowed. Like -size- and -rotate-, windowing is not 
reset upon entering a new main unit. Be sure to use a blank -window­
command (blank tag) to turn off windowing operations. It is quite 
common for an author to forget to turn off windowing and then wonder 
why some of the drawings aren't showing up! The correct structure is 
shown below. (See Figures 9-9 and 9-10.) 

window one corner;opposite corner 

(windowed) display statements 

window $$ blank tag to turn off 

Fig. 9-9. Fig. 9-10 

191 

Bruce
Rectangle



The TUTOR Language 

192 

More on Erasing: The -eraseu- Command 

When a student's response is judged "no" or "wrong", he or she can 
correct the response by hitting ERASE or ERASE 1 to erase a letter or 
word, or by hitting NEXT, EDIT, or EDITl to erase the entire response. 
If additional judging keys have been defined with a -jkey- command, 
these will act like NEXT and erase the response. If there is only one 
-arrow- command and no -endarrow-, these options are available even 
after an "ok" judgment (except that a NEXT key or another judging key 
takes the student to the next main unit rather than merely erasing the 
response). If there is a "force firsterase", the student need not clear an 
incorrect response by pressing NEXT before trying a different response. 
In this case, the first key of the new response will cause the old response 
to be erased. 

If the student erases part or all of his or her response, the "ok" or 
"no" is erased. Moreover, the last response-contingent message to the 
student is erased, since it is no longer relevant. For example: 

wrong cat 
write The cat is 

not a canine. 

The student types "cat" and presses NEXT: 

~ cat no 

The cat is 
not a canine. 

Bruce
Rectangle

Bruce
Rectangle



ADDITIONAL DISPLAY FEATURES 

Notice that there is a default -at- three lines below the response. Suppose 
the student now presses ERASE: 

~ ca 

The "t", the "no", and the text of the -write- statement have all 
disappeared automatically. This is appropriate since the comment "The 
cat is not a canine" is no longer needed. 

It is helpful to know that the method TUTOR uses for automatically 
erasing such text is by re-executing the last -write-, -writec-, or -show­
statement in the erase mode. Suppose we change the lesson slightly: 

wrong cat 
write The cat is 

not a canine. 
write Meow! 

Now the sequence looks like this: 

~ cat no 

The cat is 
not a canine. Meow! 

~ ca 

The cat is 
not a canine. 

193 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

194 

Only the last -write- statement is removed, leaving "The cat is not a 
canine" on the screen. Notice that the normal automatic erasing can be 
prevented simply by adding an extra -write- statement. Even a blank 
-write- statement will do. 

As anothcr example, consider this: 

wrongv 4 
write Number of apples= 
show apnum 

Only the -show- will be erased, leaving "Number of apples=" on the 
screen. If this is not desirable, use an embedded -show-: 

wrongv 4 
write Number of apples=«s,apnum» 

Now the last -write- statement includes the showing of the number, and 
all the writing will be erased. It is important not to change "apnum" after 
the -write-. If you change its value from what it was when shown by the 
-write-, the re-execution in "mode erase" will turn off the wrong dots in 
the numerical part of the writing. Here is the type of sequence to be 
avoided: 

wrongv 4 
write Number of apples=«s,apnum» 
calc apnum¢:apnum+25 

The number will not be erased properly due to the change in "apnum". 

Bruce
Rectangle



ADDITIONAL DISPLAY FEATURES 

Similar problems can arise with the other -show- commands, including 
-showa-. 

Sometimes the automatic erasing of the last text statement is insuffi­
cient. For example, if the reply to the student included a drawing 
produced with -draw-, or if there were several -write- statements, you 
would need some additional mechanism to remove the reply when the 
student presses ERASE. There is an -eraseu- command which you can 
use to specify a subroutine to be done wh~n the student changes his or 
her response: 

~eraseu 

l..:J.S arrow 

unit 
at 
erase 
at 
erase 

eblock 
1215 

eblock 
1512 
35,4 
318 
42 

Unit "eblock" will be done whenever the student changes a response. 
Only the first press of the ERASE key triggers the erase unit, since 
additional executions of the unit would be erasing nothing. 

Another example involves an erase unit specific to a particular 
response: 

wrong 
do 
eraseu 

(Continued on the next page.) 

3 dogs 
woof 
remove 

195 



The TUTOR Language 

196 

unit remove 
mode erase 
do woof 
mode write 
eraseu 

The statement "eraseu remove" defines unit "remove" as the unit to be 
done when the student presses ERASE (or NEXT, etc.). Unit "remove" in 
the example shown simply re-does unit "woof" in the erase mode, thus 
taking off the screen everything originally displayed by unit "woof". The 
final blank -eraseu- clears the pointer so there is no longer an erase unit 
specified. 

Notice the similarities between the -imain- and -eraseu- commands. 
Both specify units to be done under specific conditions. 

Keeping Things on the Screen: "inhibit erase" 

Let us consider a modified version of the simple language drill 
discussed in Chapter 7. 

unit 
next 
back 
at 
write 

at 
write 
randu 
at 
writec 
arrow 
answerc 

espo 
espo 
satisfy 
512 
Here is a simple drill 
on the first five 
Esperanto numbers. 
Press BACK when you 
feel satisfied with your 
understanding. 
1812 
Give the Esperanto for 
item,S 
2015 
item - 2,one,two,three,four,five 
2113 
item-2;unu;du;tri;kvar;kvin 

This version will greatly annoy the student after the first couple ques­
tions. Each time the student gets an "ok" and presses NEXT to move on 

Bruce
Rectangle



ADDITIONAL DISPLAY FEATURES 

to the next unit, the screen is erased and the student suffers through the 
introductory paragraph being written again on the screen. It turns out to 
be very annoying to see the same text replotted this way. 

This is a situation where most of the material on the screen is not 
changing and should not be replotted. Only the item and the student's 
typing need be erased to make room for a new item and a new response. 
One way to do this involves judging correct responses "wrong", as was 
done in the dialog using -concept- discussed in Chapter 7. You should 
use "specs nookno" to prevent the "no" from appearing, or you can use 
the regular -okword- and -noword- commands to change the standard 
TUTOR "ok" and "no". For example, use the statement 
"noword Fine!" to cause "Fine!" to appear for a correct response. You 
would need to do a "noword no" whenever the student answers 
incorrectly. With all responses judged "wrong" we stay at the -arrow­
and do not move on to another main unit. 

Another way to manage a screen on which little is changing involves 
"inhibit erase". This statement prevents the normal full-screen erase 
upon leaving the present main unit. The next main unit must also execute 
an "inhibit erase" if no erase is to be performed upon leaving the second 
unit. We can rewrite our drill using this feature: 

preespo 
512 

unit 
at 
write Here is a simple drill 

on the first five 
Esperanto numbers. 
Press BACK when you 
feel satisfied with your 
understanding. 
1812 at 

write 
goto 
* 

Give the Esperanto for 
esp01 

unit espo 
at 2015 
erase 5 $$ item area 
at 2115 
erase 15 $$ response area 
entry esp01 

~ inhibit erase 
"-J.S next espo 

$$ leave instructions on screen 

back satisfy 
(Continued on next page.) 

197 

Bruce
Rectangle



The TUTOR Language 

198 

randu 
at 
writec 
arrow 
answerc 

item,5 
2015 
item -2,one,two,three,four,five 
2113 
item -2;unu;du;tri;kvar;kvin 

In unit "preespo" we display the instructions about the drill. We then go 
to "espol", where we "inhibit erase" and display the first item. After 
receiving an "ok", the student moves on to the next main unit, "espo". 
The screen is not erased since there was an "inhibit erase". In unit "espo" 
we erase the area containing the displayed item, and we also erase the 
response area of the screen. We then fall through the -entry- command 
and display a new item. This process repeats continually, and only those 
parts of the screen which must be changed are erased. 

It is important to place an explicit blank -erase- statement 
("erase ") at the beginning of unit "satisfy". Since we have inhibit­
ed the normal full-screen erase, no erase will occur automatically when 
the student presses BACK to leave the drill. If unit "satisfy" does not 
explicitly erase the screen, the student will see a superposition of the drill 
display and the display produced by unit "satisfy". 

Similarly, if we specify a help unit, that unit should start with a 
full-screen erase. Upon completion of the help sequence, we should come 
back to unit "preespo" rather than "espo" in order to restore the screen 
display properly, like this: 

entry esp01 
base preespo $$ to come back to preespo from help 
help esphelp 

The -base- command puts us in a help sequence, with the base unit being 
"preespo". When a base unit has already been specified, pressing HELP 
doesn't change the base unit (in other words, there is only one "level" of 
help). When we reach an -end- command or press BACK, we will return 
to the base unit, which is preespo. Note that unit "satisfy" should have a 
blank base statement to insure that we are in a non-help sequence. 
Otherwise, pressing BACK in unit "satisfy" will bring us to the base unit 
"preespo" again. 



ADDITIONAL DISPLAY FEATURES 

Interaction of "inhibit erase" with -restart-

There is a -restart- command which is used to specify in which unit a 
student should resume study upon returning to a PLATO terminal. For 
example, suppose the last -restart- statement encountered on Monday by 
student "Ann North" in course "lingvo" was "restart espo" in lesson 
"espnum". On Wednesday she returns to a PLATO terminal and identi­
fies herself by name (Ann North) and course (lingvo). Her registration 
records will show that she is to be restarted in unit "espo" of lesson 
"espnum" and she will automatically be taken to that point. As discussed 
previously, the "ieu" (initial entry unit) will be done, which among other 
things permits character set loading. 

Unfortunately, restarting at unit "espo" means that the basic drill 
instructions contained in unit "preespo" will not appear (see last exam­
ple). This is basically an initialization problem. You should use -restart­
commands in such a way as to restart students only at the beginning of a 
section of this kind. In this particular case, we should have had a "restart 
preespo" rather than "restart espo". This is analogous to our use of 
"base preespo" for returning from a help sequence. (The more common 
form of the -restart- is the blank -restart-, which means "restart in the 
present main unit." We would place a blank -restart- in unit "preespo".) 

Aside from initialization questions related to TUTOR and the 
display screen, it should be pointed out that the student has comparable 
initialization problems. Since the student may be away for several days, it 
is often advisable to have your restart points only at the beginning of 
sections of the lesson. This way the student can ease back into the 
context, whereas restarting in the middle of a discussion may be quite 
confusing. In those lessons which include an index, the index unit may 
be the best restart point. On the other hand, you will want to arrange 
things to allow the student to restart in the middle of a section if that 
section is very long. 

When a student restarts in a lesson, he or she starts at the unit 
specified by the last -restart- command. However, the student's saved 
variables, vI through v 150, have whatever values were current at the time 
he or she left the last PLATO class session. Therefore, some care is 
required to initialize appropriate variables in the restart unit. 

The -char- and -plot- Commands 

In most cases, special characters are handled with a -charset­
command and displayed with a -write- statement using the FONT key. 
Alternatively, -char- commands can be used to transmit character patterns 

199 



The TUTOR Language 

200 

to the terminal. If a -char- command sends a pattern to character slot 35 of 
the terminal, that character can be displayed using the -plot- command: 
"plot 35". The arguments of the -char- command can be computed 
expressions so that a character can be constructed algorithmically. 
Similarly, the -plot- command may have a mathematical expression for its 
tag in order to choose the Nth character. See Appendix A for sources of 
detailed information on the -char- command. 

The -dot- Command 

The statement "dot 125,375" will plot a single dot at the specified 
location ("dot 1817" uses coarse grid). A sequence of -dot- commands 
can produce sixty dots per second on the plasma display panel. A -draw­
with one point ("draw 125,375" or "draw 1817") makes a single dot 
by drawing a minute line from this point to the same point (or itself) and, 
for technical reasons, will produce only twenty dots per second. (The 
commands -rdot- and -gdot- also exist.) 



Additional Calculation Topics 

Before discussing additional TUTOR calculational capabilities, let's 
review briefly those aspects which have been covered so far: 

1) Expressions follow the rules of high school algebra. Multiplica­
tion takes precedence over division, which takes precedence over 
addition and subtraction. Superscripts may be used to raise 
numbers to powers. The symbol 'IT may be used to mean 
3.14159 ..... The degree sign (0) may be used to convert be­
tween degrees and radians. 

2) There are 150 student variables, vI through v 150, which may be 
named with the -define- command. These variables can be set or 
altered by assignment (¢=) and by --store-, -storen-, or -storea­
commands. If a "define student" set of definitions is provided, 
the student may use variable namcs in his or her responses. 

3) Logical expressions are composed using the operators =, 1-, >, 
<, ;::0:, :"5, $and$, $or$, and the "not" function. Logical expres­
sions have the value true (-1) or false (0). 

4) Thcre are several available system variables such as "where", 
"wherey", "anscnt", "jcount", "spell", etc. Available system 
functions include sin(x), sqrt(x), etc. A full list of system varia­
bles and functions is given in Appendix C. 

5) The -show- command (and its relatives -showt-, -showz-, 
-showe-, and -showo-) will display the numerical value of an 

10 

201 

Bruce
Rectangle



The TUTOR Language 

202 

expression. The -showa- command will display stored alphanu­
meric information. These commands may be embedded within 
-write- and -writec- statements. 

6) The -calcc- and -calcs- commands make it easy to perform 
(conditionally) one of a list of calculations or assignments. 

7) The -randu- command with one argument picks a fraction 
between 0 and 1. With two arguments, it picks an integer 
between 1 and the limit specified. There is a set of commands 
associated with permutations: -setperm-, -randp-, -remove-, and 
-modperm-. 

8) The iterative form of the -do- command facilitates repetitive 
operations. 

N ow let's look at additional TUTOR calculational capabilities. 

Defining Your Own Functions 

While many important functions such as In(x) and log(x) are built-in 
to the TUTOR language, it is frequently convenient to define your own 
functions. To take a simple example, suppose you define a cotangent 
function: 

define cotan(a)=cos(a)/sin(a) 

Then, later in your lesson you can write: 

calc r¢=cotan(3x+y-5) 

and TUTOR will treat this as though you had written: 

calc r¢=[cos(3x+y-5)/sin(3x+y-5)] 

Such use of functions not only saves typing but improves readability. 
CAUTION: In defining a function, the arguments must not be 

already defined. For example, the following definition will be rejected by 
TUTOR (with a suitable error message): 

define x=v1 
cube(x)=x3 

This must be rewritten as: 

define x=v1 
cube(dummy)=dummy3 



ADDITIONAL CALCULATION TOPICS 

or anything similar. A function definition may involve previously defined 
quantities on the right side of the "=" sign, however. You might have: 

define x=v1 
new(c)=c4+2x 

In this case you might have a -calc- that looks like: 

calc x¢o15.7 
Y¢o3new(8) 

and this would be equivalent to: 

calc x¢o15.7 
Y¢o3[(8)4+2x] 

Sometimes it is convenient to define "functions" that have no 
arguments: 

define r=v1 
quad=rL100 
r3=rl/3 
root=sqrt(r) 
prod=r3xroot 
trans=(r¢oprod) 

Note that "prod" depends on two previous definitions, each of which (in 
turn) depends on the definition of "r". There is no limit on how deep you 
can go in definition levels. The unusual definition of "trans" permits you 
to write an unusual -calc- (where the assignment is implicit in the 
definition of "trans"): 

calc trans 

Essentially anything is a legal definition. The only rule is that the 
definition make sense when enclosed in parentheses (since a defined 
name when encountered in an expression is replaced by its meaning and 
surrounded by parentheses). This means that you cannot define 
"minus= -" because (-), a minus sign enclosed in parentheses, is not 
permitted in an expression. On the other hand, "minus= -1" is all right 
because (-1) is meaningful. 

A function may have up to six arguments. Here is a function of two 
arguments: 

203 



The TUTOR Language 

204 

define modulo(N,base)=N -[basex int(N/base)] 

This means that modulo (17,5) in an expression will have the value 2; the 
"int" or "integral part" function throws away the fractional part of 17/5, 
leaving 3, so that we have (17-5x3)=(17-15)=2. This modulo function, 
therefore, gives you what is left over in division of "N" by "base". 

Here are a couple of other examples of multi-argument function 
definitions: 

define big(a,b)=-[ax (a;?:b)+bx(b>a)] 
small(a,b)= - [a x (a:5b) + bx (b<a)] 

The minus sign appears because logical true is represented by -1. If you 
have "big(x+y,z)" in an expression, with (x+y)=7 and z=3, this expands 
to: 

-[7x (7;?:3)+3x (3) 7)] 

which reduces to -[7x(-1)+3x(0)] which is 7. So our "big" function 
picks out the larger of two arguments. 

Arrays 

It is often important to be able to deal with arrays of data such as a 
list of exam scores, the number of Americans in each 5-year age group 
together with their corresponding mortality and fertility rates, a list of. 
which pieces are where on a chess board, or the present positions of each 
of several molecules in the simulation of the motion of a gas. 

Suppose we have somehow entered the exam scores for twenty 
students into variables v31, v32, v33 ... up to v50. Here is a unit which 
will let you see the score of the 5th or 13th or Nth student: 

unit 
back 
at 
write 

arrow 
store 
wrongv 
write 

see 
index 
1215 
Which student number? 
(Press BACK when done.) 
1518 

~0.5,9.5 $$ range 1 to 20 ~ 
The score of the «s,N~th student is «s,v(30+N)~. 



ADDITIONAL CALCULATION TOPICS 

(The -wrongv- rather than -ansv- makes it easy to ask another question.) 
The new element here is the "indexed variable": 

v(30+N) 

which means "evaluate 30+N, round to the nearest integer, and choose 
the corresponding variable". For example, if N is 9, v(30+ N) is v(39) or 
v39. If N is 13.7, v(30+N) means v44. 

We might list and total all the scores: 

calc 
do 
at 
write 
* 
unit 
at 
show 
calc 

totak=0 $$ initialization step 
showem,N¢,1,20 
3035 
The average score is «s,totaI/20p. 

showem 
835+100N 
v(30+N) 
total¢'total+v(30+N) 

As usual, it is preferable to define a name for this data, such as: 

define scores(i)=v(30+i) 

in which case we would write our last unit as: 

unit 
at 
show 
calc 

showem 
835+100N 
scores(N) 
total¢'total+scores(N) 

Due to the special meaning attached to "v(expression)" you must exercise 
some care in using a variable named "v", in that you must write 
"vx(a+3b)" and not "v(a+3b)" if you mean multiplication. We will see 
later that the same restriction applies to the names "n", "vc", and "nc". 
This restriction does not apply to students entering algebraic responses, 
where "v(a+3b)" is taken to mean "vx(a+3b)". Students can use indexed 
variables only if they are named (as in "scores" in the above example). 
Such definitions must, of course, be in the "define student" set. 

Suppose you have three sets of exam scores for the twenty students. 
This might conveniently be thought of as a 3 by 20 ("two-dimensional") 

205 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

206 

array. Suppose we put the first twenty scores in v31 through v50, the 
second set in v51 through v70, and the third set in v71 through v90. It 
might be convenient to redefine your array in the following manner: 

define scores(a,b)=v(10+20a+b) 

Then, if you want the 2nd test score for the 13th student, you just refer to 
scores (2,13) which is equivalent to v(10+40+ 13) or v(63). If you wanted 
to display all the scores you might use "nested" -do- statements: 

do column,i¢=1,3 
* 
unit column 
do rows,j¢=1,20 
* 
unit rows 
at 820+10i+100j 
show scores(i,j) 

Unit "column" is done three times and for each of these iterations, unit 
"rows" is performed twenty times. 

There is an alternative way to define our array: 

define i=v1,j=v2 
scores=v(10+20i + j) 

Then our unit "rows" would look like: 

unit rows 
at 820+10i+100j 
show :;cores 

The indices specifying which test is for which student are implicit. This 
form is particularly useful when you have large subroutines where "i" 
and "j" are fixed and it would be tiresome to type over and over again 
"scores(i,j)". Just set "i" and "j", then -do- the subroutine. 

It is frequently necessary to initialize an entire array to zero. One way 
to do this is with -do- statements: 

unit clear 
do c1ear2,i¢=1,3 
* 



ADDITIONAL CALCULATION TOPICS 

unit clear2 
do clea r3,j¢' 1 ,20 
* 
unit clear3 
calc scores(i,j)¢'0 

A simpler way to accomplish the same task is to say: 

zero scores(1,1),60 

You simply give the starting location (the first of the 60 variables) and the 
number of variables to be cleared to zero. As another example, you can 
clear all of your variables by saying: 

zero v1,150 

Not only is the -zero- command simpler to use, but TUTOR can carry out 
the operation several hundred times faster! TUTOR keeps a block of its 
own variables, each of which always contains zero. When you ask for 150 
variables to be cleared, TUTOR does a rapid block transfer of 150 of its 
zeroed variables into your specified area. This ultra-high-speed block 
transfer capability can be used in other ways. For example: 

transfr v10;v85;25 

performs a block transfer of the 25 variables starting with v 10 to the 25 
variables starting with v85. In this way you can move an entire array from 
one place to another with one -transfr- command, and at speeds hundreds 
of times faster than are possible by other means. 

Segmented Variables 

Storing three scores for each of your twenty students required the use 
of 60 variables, out of an available 150. We're running out of room! You 
can save space by defining "segmented" variables which make it easy to 
keep several numbers in each student variable. For example, you can 
write a definition of the form: 

define segment,score=v31,7 

This identifies "score" as an array which starts at v31 and consists of 
segments holding positive integers (whole numbers) smaller than 27 
(which is 128). It turns out that each student variable will hold 8 such 

207 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

208 

segments, so "score(8)" is the last segment in v31, while "score(9)" is the 
first segment in v32. Since "score(60)" is the fourth segment in v38, we 
need only eight variables to hold all sixty scores. You can use 
"score(expr)" in calculations. The expression "e'xpr" will be rounded to 
the nearest integer and the appropriate segment referenced. As a simple 
example: 

calc score(23)¢'score(3)+5 

will get the third segment, add 5 to it, and store the result in the 
twenty-third segment. 

If we define a segmented one-dimensional array "score", we can 
define a two-dimensional array as before: 

define segment,score=v31,7 
scores(a,b)=score(20a-20+b) 

With these definitions, "scores(l,l)" means "score (20-20+ 1)" or 
"score(l)", which is the first segment in v31. As before, "scores" could 
use implicit indices: 

define i=v1,j=v2 
scores=score(20i - 20 +j) 

In this case you use "scores" rather than "scores(expr 1,expr2) in calcula­
tions. NOTE: At the present writing, the commands -zero- and -transfr­
cannot be used with segmented variables because these commands refer 
to entire variables. You could, however, zero all of the scores by saying 
"zero v31,8" which sets v31 through v38 to zero, which has the ~ffect of 
zeroing all the segments contained in those eight variables. You can make 
such manipulations more readable by defining your segmented array this 
way: 

define start=v31 
segment,score=start,7 

Then you can write "zero start,8" rather than "zero v31,8". Similar 
remarks apply to the -transfr- command. 

It is possible to store integers (whole numbers) that can be negative 
as well as positive: 

define segment,temp=v5,7,signed 

Bruce
Rectangle

Bruce
Rectangle



ADDITIONAL CALCULATION TOPICS 

The addition of the word "signed" (or the abbreviation "s") permits you 
to hold in "temp(i)" any integer from -63 to +63. The range 27 (128) has 
been cut essentially in half to accommodate negative as well as positive 
values. The following table summarizes the unsigned and signed ranges 
of integers permissible for various segment size specifications up to 30 
(sizes up to 59 are allowed, though beyond 30 there is only one segment 
per variable). 

No. of 
Segment unsigned range 
size 

signed range segments 
per 

n 2n 

1 2 o to 1 
2 4 o to 3 
3 8 o to 7 
4 16 o to 15 
5 32 o to 31 
6 64 o to 63 
7 128 o to 127 
8 256 o to 255 
9 512 o to 511 
10 1 024 o to 1 023 
11 2 048 o to 2 047 
12 4096 o to 4 095 
13 8 192 o to 8 191 
14 16384 o to 16383 
15 32768 o to 32 767 
16 65536 o to 65 535 
17 131 072 o to 131 071 
18 262 144 o to 262 143 
19 524288 o to 524287 
20 1 048576 o to 1 048575 
21 2 097 152 o to 2 097 151 
22 4 194304 o to 4 194303 
23 8388608 o to 8 388 607 
24 16777 216 o to 16777215 
25 33554432 o to 33 554431 
26 67 108864 o to 67 108 863 
27 134217728 o to 134217727 

-1 to +1 
-3 to +3 
-7 to +7 

-15 to +15 
-31 to +31 
-63 to +63 

-127 to +127 
-255 to +255 
-511 to +511 

-1 023 to +1 023 
-2 047 to +2 047 
-4 095 to +4 095 
-8 191 to +8 191 

-16383 to +16383 
-32767 to +32767 
-65535 to +65535 

-131 071 to +131 071 
-262 143 to +262 143 
- 524 287 to + 524 287 

-1 048575 to +1 048575 
-2 097 151 to +2097 151 
-4 194303 to +4 194303 
-8 388 607 to +8 388 607 

-16777215 to +16777 215 
-33 554431 to +33 554431 
-67 108 863 to +67 108 863 

variable 
60 
30 
20 
15 
12 
10 
8 
7 
6 
6 
5 
5 
4 
4 
4 
3 
3 
3 
3 

28 268 435 456 o to 268 435 455 -134217727 to +134217727 

3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

29 536870912 o to 536870911 -268435455 to +268435455 
30 1 073741 824 o to 1 073741 823 -536870911 to +536870911 

Table 10-1. 

209 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

210 

As an example of the use of this table, suppose you are dealing with 
integers in the range from -1200 to + 1800. You would need a segment 
size of 12 (signed), which gives a range from -2047 to +2047. There 
would be 5 segments in each variable. Your -define- might look like: 

define segment,dates=v140,12,signed 

It is not necessary to understand the rationale behind this table in order to 
be able to use segments effectively. Explanations of the underlying 
"binary" or "base 2" number system and the associated concept of a "bit" 
are discussed later in an optional section of this chapter. 

Segments are frequently used to set "flags" or markers in a lesson. 
For example, you might like to keep track of the topics the student has 
completed or which questions in a drill have been attempted. A segment 
size of just one is sufficient for such things, with the segment first 
initialized to zero, then set to one when the topic or question has been 
covered. The definition might look like this: 

define flags=v2 
segment,flag=flags,1 

In the first unit, (not the "initial entry unit") use the statement 
"zero flags" to clear all sixty segments in v2. If you use up to 120 
markers you would use "zero flags,2" to clear two variables, each 
containing 60 segments. When the student completes the fourth topic you 
use "calc flag(4)¢::I" to set the fourth flag. You can retrieve this informa­
tion at any time to display to the student which topics he or she has 
completed. Note that the -restart- command can be used to restart the 
student somewhere after the first unit (where the flags would otherwise 
be cleared), so that you can remind the student of which sections he or 
she completed during previous sessions. 

Although only whole numbers can be kept in segments, it is possible 
to use the space-saving features of segments even when dealing with 
fractional numbers. Suppose you have prices of items which (in dollars 
and cents) involve fractions such as $37.65 (37 dollars plus 65 hun­
dredths of a dollar). Assume that $50 is the highest price for an item. 
Simply express the prices in cents, with the top price then being 5000 
cents. Using the table, we see that a segment size of 13 will hold positive 
integers up to 8191, so we say: 

define price=v1 $$ in dollars and cents 
segment,cents=v2,13 
put(i)=[cents(i)¢::100price] 
get(i)=[price¢::cents(i)/100] 

Bruce
Rectangle

Bruce
Rectangle



ADDITIONAL CALCULATION TOPICS 

A sequence using these definitions might look like: 

calc price¢=28.37 

calc put(16) $$ equivalent to "cents(16)¢=100price" 

show get(16) $$ equivalent to "price¢=cents(16)/100" 

The final -show- will put "28.37" on the screen, even though between the 
"put" and "get", the number was the integer "2837". Notice the unusual 
"calc put(16)" which has an assignment (¢=) implicit in the definition of 
"put". Also notice that the variable "price" is changed as a side-effect of 
"get". If this is not desired, we could define "get(i)=cents(i)/100". 

As another example of the use of segments with fractional numbers, 
suppose you have automobile trip mileages up to 1000 miles which you 
want to store to the nearest tenth-mile (such as 243.8 miles). In this case 
you must multiply by 10 when storing into a segment and divide by 10 
when retrieving the information. You would use a segment size of 14, 
since your biggest number is 10000. It should be pointed out that 
rounding to the nearest integer occurs when storing a non-integer value 
into a segment: 

calc miles¢=539.47 
seg(2)¢=10 miles $$ 5394.7 becomes 5395 
miles¢=seg(2)/10 $$ 5395/10 or 539.5 

So, by going into and out of the segment, the "539.47" has turned into 
"539.5". 

Aside from the restriction to integers, calculations with segmented 
variables have one further disadvantage: they are much slower than 
calculations with whole variables. This is due to the extra manipulations 
the computer must perform in computing which variable contains the 
Nth segment, and extracting or inserting the appropriate segment. Seg­
ments save space at the expense of time. In many cases this does not 
matter, but you should avoid doing a lot of segment calculations in a 
heavily-computational repetitive loop, such as an iterative -do- which is 
done ten thousand times. (There are other kinds of segments, "vertical" 
segments, which are handled much faster but these have quite different 
space requirements than regular segmented variables.) 

211 

Bruce
Rectangle



The TUTOR Language 

212 

Branching Within a Unit: -branch- and -doto-

All of the branching or sequencing commands discussed so far 
referred to -unit-s (or -entry-s). It is often convenient to be able to branch 
within a unit, which is possible with the -branch- command: 

unit 
~branch 
ClS at 

write 
5 
do 
8after 

somethin 
cou nt-4,5,x,8after 
1215 
"count" is equal to 4 

countit 
count<=15 

The tag of the -branch- command is like the tag of a -goto-, except that 
unit names are replaced by "statement labels." These labels appear at the 
beginning of statements and must start with a number (0 through 9) to 
distinguish them from commands, which start with letters. A statement 
beginning with a label need not have any tag (as in the line above labeled 
"5"), but it can have a tag like that of a -calc-, as in the last statement 
above ("Safter count<=15"). In fact, a labeled statement is essentially a 
-calc- statement. As with -goto-, "x" in a -branch- means "fall through" to 
the next statement. 

It is not permissible in a unit to label two statements with the same 
label (nor can you have two units with the same name in a lesson). On the 
other hand, since -branch- operates only within a unit and cannot refer to 
labels in other units, it is all right to use the same label in different units. 
(Similarly, you can use the same unit name in different lessons.) Note that 
-entry- is similar to -unit-, so -branch- cannot be used to branch to a label 
if an -entry- command intervenes. 

It is often convenient to use -branch- rather than -goto-. In addition, 
-branch- requires less computer processing than -goto-, so that heavily 
computational iterations are better done with -branch- where possible. 
Generally speaking, about the only time you must consider the computa­
tional efficiency of one TUTOR technique compared with another is 
when you do a large number of iterations of some process. Unless you are 
making many passes through the same statements, merely write your 
TUTOR statements in what seems to be the simplest and most readable 
manner. It is a mistake to spend time worrying about questions of 
efficiency if the student will make only one pass through the statements. 

Just as -branch- is a fast -goto- within a unit, there is a fast -doto­
(analogous to the iterative -do-) for use within a unit: 



ADDITIONAL CALCULATION TOPICS 

~doto 
CJS calc 

at 
write 
8end 
circle 

8end,i¢=first,last,incr 
a¢=bxsin(5iO) 
100,200+2a-i 
T 

100 

The tag of the -doto- is similar to an iterative -do-, but instead of naming a 
unit to be done repeatedly you name a statement label. For each iteration 
TUTOR executes statements from the -doto- down to the named state­
ment label. After the last iteration is performed, TUTOR proceeds to the 
statement which follows the -doto-Iabel (-circle- in the above example). 

Just as it is possible to have nested -do- iterations, it is also possible 
to have nested -doto-s. Here is a comparison of -do- and -doto- for 
displaying a two-dimensional array: 

-do- -doto-

do column,i¢=1,3 doto 4,i¢=1,3 
unit column doto 4,j¢=1,20 
do rows,j¢=1,20 at 820+10i+100j 
unit rows show scores(i,j) 
at 820+10i+100j 4 
show scores(i,j) 

This nested -doto- example has the structure: 

doto 4 

doto 

4 
Other possible structures include the following: 

doto 8 

doto 

5 

8 

213 

Bruce
Rectangle



The TUTOR Language 

214 

dote 8 dote 8 

dote 5 dote 
3J 

dote 
3J 

3 

3 dote 
5J 

5 5 

8 8 

Note that in each case the "inner" -doto-s are nested within the "outer" 
-doto-s. Here is a counter-example of a structure which is not permissible: 

dote 5 

dote 8 
ILLEGAL! 

5 

8 

When do you use -doto- instead of an iterative -do-? Use -doto­
whenever the contents of the loop are very short, because the "overhead" 
associated with each -doto- iteration is much less than the "overhead" 
associated with each -do- iteration. This is due to the extra manipulation 
involved in getting to the "done" unit. If the contents of the loop are long, 
the overhead becomes insignificant, and either -do- or -doto- can be used, 
whichever you prefer or whichever is more readable. 

Array Operations 

You have seen how to operate on individual elements of an array by 
using indexed variables. It is also possible to define an array in such a 
way as to permit operating on the array as a whole. Here are two sets of 
statements, one using true "arrays" and the other using indexed variables, 
with both routines calculating the sum of sixty scores (three scores for 
each of twenty students): 

TRUE ARRAY 
define total=v1 

array,scores(3,20)=v31 

INDEXED VARIABLE 
define total=v1,i=v2,j=v3 

scores(a,b) =v( 10 + 20a +b) 

Bruce
Rectangle

Bruce
Rectangle



ADDITIONAL CALCULATION TOPICS 

calc tota I¢= Sum (sco res) calc 
doto 
doto 
calc 
4 

total¢=0 
4,i¢o1,3 
4,j¢o1,20 
total¢ototal +scores(i,j) 

The calculation using indexed variables involves initializing "total" to 
zero, then using nested -doto-s to add in each element of "scores". The 
true array calculation is much simpler, involving a single -calc- state­
ment! 

The statement "define array,scores(3,20)=v3I" tells TUTOR to put 
scores (1,1) in v3I, scores (1,2) in v32, scores (1,3) in v33, etc., with scores 
(2,1) in v5I, scores (2,2) in v52, etc. Moreover, this "array" definition 
permits you to work with the whole array, and there are various array 
functions such as "Sum" to help you. The expression "Sum(scores)" 
means "add up all the numbers in all the elements of the array". 
Similarly, the statement "scores¢oscores+ 1" will cause all sixty array 
elements to be increased by one. 

Such whole-array operations are not possible with indexed variables, 
because (with indexed variables) TUTOR does not know how many 
elements make up the whole array. On the other hand, the complexities of 
handling true arrays limits their size to 255 elements at present and to 
only two "dimensions" (that is, you can't say "define array,points 
(2,5,4)=vI", which would define a three-dimensional array). So, ordinary 
indexed variables do have their uses, particularly when manipulating 
large databases (as discussed in the next chapter). While the most useful 
feature of true arrays is the ability to deal with all elements at once, you 
can also refer to individual elements, such as scores(2,I5), just as you 
would with indexed variables. 

Suppose we define two arrays, A and B, both ten variables long: 

define array,A(10)=v141 
array,B(10)=v131 

The following calculations involving these arrays will have the specified 
results: 

CALCULATION RESULT 

A¢o2B Each element of A is assigned the value of 
two times the corresponding element of B: 
A(1 )¢o2B(1), A(2)¢o2B(2), etc. 

(Continued on next page.) 

215 

Bruce
Rectangle



The TUTOR Language 

216 

CALCULATION 
(continued) 

A¢o25 
A¢o1/A 

A¢oA+B 

A¢o3.4cos(B) 
A¢oB2 

RESULT 
(continued) 

Each element of A is set to 25. 
Each element of A is replaced by its recipro­

cal. 
Corresponding elements of A and Bare 

added together, and the sum replaces the 
element of A: A(1)¢oA(1)+B(1), A(2)¢::A(2) 
+B(2), etc. 

A(1 )¢o3.4cos(B(1 )), etc. 
Presently not allowed: use A¢oBxB instead. 

A¢oA $and$ B Each element of A is replaced by -1 or 0, 
depending on a logical "and" of the corre­
sponding elements of A and B (which 
should of course contain logical values, -1 
and 0, to begin with). 

There are a couple of special operators unique to array manipulations: 
A 0 B gives the standard "matrix multiplication", with row-by-column 
multiplication and summation, and AxB gives the standard "vector 
product" or "cross product". If A and B are one-dimensional arrays, the 
matrix multiplication A 0 B yields a single number, known in mathemat­
ics as the "dot product". The symbol 0 is typed by means of MICRO-x, 
and "x" is typed by MICRO-shift-x. 

There are some useful functions: 

Sum(A) 
Prod(A) 

Min(A) 
Max(A) 
And(A) 
Or(A) 
Rev(A) 
Transp(A) 

Adds up all the elements of A 
The product of all the elements: A(1) x A(2) .... 

x A(10) 
Picks out the smallest value 
Picks out the largest value 
A(1 )$and$A(2)$and$A(3) ....... $and$A(10) 
A(1 )$or$A(2)$or$A(3) ....... $or$A(10) 
Reverses the order of the elements 
Produces the transposed array: A(i,j)¢oA(j,i) 

Combinations of the various operations and functions can be used to 
your advantage. For example, a common statistical calculation involves 
the square root of the sum of the squares of all array elements. This can be 
easily obtained from sqrt(Sum(AxA)), or from sqrt(A 0 A) if A is a 
one-dimensional array. 

Bruce
Rectangle



ADDITIONAL CALCULATION TOPICS 

Arrays can be filled with a -set- command and displayed with a 
-showt- command: 

define 
set 

at 
showt 

array,C(2,3l=v16I 
C¢,100,200,300 

400,500,600 
1215 
2C,5 $$ 5 figures 

will display 
200 400 600 

800 1000 1200 

The -set- command fills elements in order. For example: C(I,I), C(I,2), 
C(I,3), C(2,1), C(2,2), C(2,3). The -showt- ("show tabular") command 
shows the numbers appropriately on the screen. You can also use 
-showe-, -showo-, and -showa- (but not -show- or -showz- at present). 

It is often convenient for the array elements to be offset, so that the 
first element is not numbered "one". For example, you might want an 
array of the world population from 1900 to 1970. In this case, simply say 
"define array,popul(1900;1970)=vl", which assigns popul(1900) to vI 
and popul(1970) to v71. Note the semicolon in the -define-. A two­
dimensional array with offsets is written "define array,D( -3,0;5,8)=v 1", 
where D( -3,0) is in vI, D( -3,1) is in v2, etc. The last element of this array 
is D(5,8). 

Integer Variables and Bit Manipulation 

This section goes much more deeply into the way a computer rep­
resents numbers and character strings. You might start off by skimming 
this section to see whether you will need to study it in detail. You will 
need this material only if you pack several pieces of data in one variable 
or if you want to use -calc- operations on character strings. 

A variable such as v150 can hold a number as big as 10322 (the 
number 1 followed by 322 zeros) or a non-zero number as small as 10-293 

(a 1 in the 293rd position after the decimal point). These huge or tiny 
numbers may be positive or negative, from ±10-293 up to ±10322• Any 
number held in v 150 is recorded as sixty tiny "bits" of information. For 
example, whether the number is positive or negative is one bit of 
information, and whether the magnitude is 10+200 or 10-200 is another bit 
of information. The remaining 58 bits of information are used to specify 
precisely the number held in v150. 

What is a bit? A bit is the smallest possible piece of information and 
represents a two-way (binary) choice such as yes or no, or true or false, or 

217 

Bruce
Rectangle



The TUTOR Language 

218 

up or down (anything with two possibilities). A number is positive or 
negative and these two possibilities can be represented by one bit of 
information. Numbers themselves can be represented by bits correspond­
ing to yes or no. Let us see how any number from zero to seven can be 
represented by three bits corresponding to the yes or no answers to just 
three questions. Suppose a friend is thinking of a number between zero 
and seven and you are to determine it by asking the fewest possible 
questions to be answered yes or no. Suppose the friend's number is 6: 

a) Is it as big as 4? Yes. 
b) Is it as big as 4+2? Yes. 
e) Is it as big as 4+2+1? No. 

From this you correctly conclude that the number is 6. You determined that 
the number was made up of a 4, a 2, and no 1. You might also say that the 
number can be represented by the sequence "yes,yes,no"! 

As another example, try to guess a number between zero and 63 
chosen by the friend. Suppose it is 37: 

a) Is it as big as 32? Yes. 
b) Is it as big as 32+16? No. 
e) Is it as big as 32+8? No. 
e) Is it as big as 32+4? Yes. 
d) Is it as big as 32+4+2? No. 
e) Is it as big as 32+4+1? Yes. 

So the number is 37, or perhaps "yes,no,no,yes,no,yes". Try this ques­
tioning strategy on any number from zero to 63 and you will find that six 
questions are always sufficient to determine the number. The strategy 
depends on cutting the unknown range in two each time (a so-called 
"binary chop"). 

Conversely, any number between zero and 63 can be represented by 
a sequence of yes and no answers to six such questions. What number is 
represented by the sequence 

yes,yes,no,yes,no,yes? 

This number must be built up of a 32, a 16, no 8, a 4, no 2, and a 1. 
32+ 16+4+ 1 is 53, so the sequence represents the number 53. 

Because a yes or no answer is the smallest bit of information we can 
extract from our friend, we say any number between zero (six nos) and 63 
(six yeses) can be represented by six bits. If on the other hand we know 
the number is between zero and seven, three bits are sufficient to describe 

Bruce
Rectangle



ADDITIONAL CALCULATION TOPICS 

the number fully. Similarly, numbers up to 15 (24-1) can be expressed 
with four bits, and numbers up to 31 (2L 1) with five bits. Each new 
power of two requires another bit because it requires another yes/no 
question to be asked. 

This method of representing numbers as a sequence of bits, each bit 
corresponding to a yes or no, is called "binary notation" and is the 
method normally used by computers. Whether a computer bit represents 
yes or no is typically specified by a tiny electronic switch being on or off, 
or by a tiny piece of iron being magnetized up or down. A TUTOR 
variable contains sixty bits of yes/no information and could therefore be 
used to hold a positive integer as big as (26~-1), which is approximately 
1018, or 1 followed by 18 zeros. What do we do about negative integers? 
Instead of using all sixty bits we could give up one bit to represent 
whether the number is positive or negative (again, a two-way or binary bit 
of information) and just use 59 bits for the magnitude of the number. In 
this way we could represent positive or negative integers up to ±(259 -1), 
which is approximately plus or minus one-half of 1018. 

But what do we do about bigger numbers, or numbers such as 3.782 
which are not integers? The scheme used on the CONTROL DATA® 
PLATO computcr is analogous to the scientific notation used to express 
large numbers. For example, 6.02x 1023 is a much more compact form 
than 602 followed by 21 zeros, and it consists of two essential pieces: the 
number 6.02 and the exponent or power of ten (23). Instead of using 59 
bits for the number, we use only 48 bits and use 11 bits for the exponent. 
Of these.11 bits, one is used to say whether the exponent is positive or 
negative (the difference between 10+6, a million, and 10-6, one-millionth). 
The remaining ten bits are used to represent exponents as big as one 
thousand (21!l-1 is 1023, to be precise). The exponent is actually a power 
of two rather than ten, as though our scientific notation for the number 40 
were written as 5x23 instead of 4x101. That is, instead of expressing the 
number 40 as 4x 10\ we express it as 5x23, putting the 5 in our 48-bit 
number and the 3 in the 11-bit exponent storage place. In this way we 
split up the 60 bits as: 

1 bit for positive or negative number 
1 bit for positive or negative exponent 
10 bits for the power of two 
48 bits for the number 

The 48-bit number will hold an integer as big as (24L 1), which is about 
2.5x 1014. If we wish to represent the number 1/4, the variable will have a 
number of 247 and an exponent of -49: 

247X2-49=2-2= 1 /4 

219 

Bruce
Rectangle



The TUTOR Language 

220 

That is, the 48-bit number will hold a large integer, 247, and the exponent 
or power of 2, will be -49. The complicated format just described is that 
used by the PLATO computer when we calculate with variables vI 
through v 150. It automatically takes care of an enormous range of 
numbers by separating each number into a 48-bit number and a power of 
two. This format is called "fractional" or "floating-point" format because 
non-integral values can be expressed and the position of the decimal 
point floats automatically right or left as operations are performed on the 
variable. 

Sometimes this format is not suitable, particularly when dealing with 
strings of characters. The -storea- and -pack- commands place ten 
alphanumeric characters into each variable or "word" (a computer 
variable is often called a "word" because it can contain several charac­
ters). We simply split up the sixty bits of the word into ten characters of 
six bits each, six bits being sufficient to specify one of 64 possible 
characters, from character number zero to character number 63 (26 -1). In 
this scheme character number 1 corresponds to an "a", number 2 to a "b", 
number 26 to a "z", number 27 to a "0", number 28 to a "1", etc. A capital 
D requires two 6-bit character slots including one for a "shift" character 
(which happens to be number 56) and one for a lower-case "d" (number 
4). The -showa- command takes such strings of 6-bit character codes and 
displays the corresponding letters, numbers, or punctuation marks on the 
student's screen. 

~ign of number 

5ian of exponent 

fl oat i ng-po i nt 

expo 48-bit number 

1 1 48 bit5 

6 6 6 6 6 6 6 6 6 6 bit~ 
Fig. 10-1. 

Bruce
Rectangle



ADDITIONAL CALCULATION TOPICS' 

Nonsensical things happen when a -showa- command is used to 
display a word which contains a floating-point number. The two sign bits 
(for the number and for the exponent) and the first four bits of the 
exponent make up the first 6-bit character code. The last six bits of 
the exponent are taken as specifying the second 6-bit code. Then the 
remaining 48 bits are taken as specifyiitg eight 6-bit character codes. 
Small wonder that using a -showa- on anything other than character 
strings usually puts gibberish on the screen. On the other hand, using a 
-show- with a character string gives nonsense: the floating-point exponent 
is made up out of pieces of the first and second 6-bit character codes, the 
48-bit number comes from the last eight character codes, and whether the 
number and the exponent are positive or negative is determined by 
the first two bits of the first character code. (See Fig. 10-1) 

So far we have kept numerical manipulations (-calc-, -store-, -show-) 
completely separate from character string manipulations (-storea-, 
-showa-). The reasons should now be clear. It is sometimes advantageous, 
however, to be able to use the power of -calc- in manipulating character 
strings and similar sequences of bits. For such manipulations we would 
like to notify TUTOR not to pack numbers into a variable in the useful 
but complicated floating-point format. This is done by referring to 
"integer variables": 

n 1 ,n2,n3--------------n 149,n 150 
The integer variable n17 is the same storage place as v17, but its internal 
format will be different. If we say "calc v17<:=6", TUTOR will put into 
variable number 17 the number 6, expressed as 6x245 with an exponent of 
-45, so that the complete number is 6x245 X2-45, or 6. If on the other 
hand we say "calc n17<:=6", TUTOR will just put the number 6 into 
variable number 17. (See Fig. 10-2.) Since the number 6 requires only 
three bits to specify it, variable 17 will have its first 57 bits un used (unlike 
the situation when we refer to the 17th variable as v 17, in which case both 
the exponent and the magnitude portions of the variable contain informa­
tion). 

ex~onent number 

II -45 

I 
6 x2 45 I vI 7+' 

I 6 I nI7+' 

Fig. 10-2. 

221 

Bruce
Rectangle



The TUTOR Language 

222 

Consider the following sequence: 

calc n17¢=6 

at 1223 
showa n17,10 

This will cause an "f" (the 6th letter in the alphabet) to appear on the 
screen at location 1223. The first 9 character codes in n17 are zero, and 
these zero or "null" codes have no effect on the screen or screen 
positioning. Indeed, a "showa n17,9" would display nothing since the 
"6" is in the tenth character slot. If we use "show n17", we will only see 
a "6" on the screen. The integer format of n17 alerts -show- not to expect a 
floating-point format. 

If we say "calc n23¢=5.7", variable n23 will be assigned the value 6. 
Rounding is performed in assigning values to integer variables. If 
truncation is desired, use the "int" function: "n23¢=int(5.7)" will assign 
the integer part (5) to n23. Indexed integer variables are written as 
"n(index)" in analogy with "v(index)". 

The -showa- and -storea- commands may be used with either 
v-variables or n-variables. These commands simply interpret any v- or 
n-variable as a character string. This is the reason why we were able to 
use -showa- and -storea- without discussing integer variables. 

It is possible to shift the bits around inside an integer variable. In 
particular, a "circular left shift", abbreviated as "$cls$", will move bits to 
the left, with a wrap-around to the right end of the variable. For example: 

calc n17¢=6 $cls$ 54 

at 1223 
showa n17,1 $$ show one character 

will display an "f" even though the -showa- will display only the first 
character, because the "6" has been shifted left 54 bit positions (9 six-bit 
character positions). A circular left shift of 54 may also be thought of as a 
right circular shift of 6 because of the wrap-around nature of the circular 
shift. 

We have been using "n17" as an example, but we should actually be 
writing "inurn" or some such name, where we have used a -define- to 



ADDITIONAL CALCULATION TOPICS 

specify that "inum=n17". For the remainder of this chapter we revert, 
therefore, to the custom of referring to variables (v or n) by name rather 
than number. Also, if we want the character code corresponding to the 
letter "f" we should use "f" rather than 6. For example: 

calc inum¢:"f" $cls$ 54 

is equivalent to but much more readable than: 

calc n17¢:6 $cls$ 54. 

The quotation marks can be used to specify strings of characters. For 
example: 

calc inum¢:"cat" 

will put these numbers in inum: 

Fig. 10-3. 

A "showa inum,10" will display "cat". Notice, particularly, that using 
quotes in a -calc- to define a character string puts the string at the right 
("right adjusted"), whereas the -storea- and -pack- commands produce 
left-adjusted character strings. It is possible to create left-adjusted 
character strings by using single quote marks: inum¢:'cat' will place the 
"cat" in the first three character positions rather than the last three. 

Let us now return to our early example of the number 37 expressed as 
the sequence of six bits "yes,no,no,yes,no,yes". If we let 1 stand for 
"yes", and 0 for "no", we might write this sequence as: 

100101 

which stands for: 

(1 x32)+(0x 16)+(0x8)+(1 x4)+(0x2)+(1 x1) = 32+0+0+4+0+1 = 37 

or even more suggestively: 

223 

Bruce
Rectangle



The TUTOR Language 

(1 x25)+(0x24)+(0x23)+(1 x22)+(0x21 )+(1 x2~) = 32+0+0+4+0+1 = 37 

224 

(Note that 2° equals 1.) Writing the sequence in this way is analogous to 
writing 524 as: 

(5x102)+(2x10 1 )"4(4x100 ) = 500+20+4 = 524 

In other words, when we write 524 we imply a "place notation" in base 
10 such that each digit is associated with a power of 10: 5x 102, 2x 101, 

4x 100. Similarly, rewriting our yes and no sequences as 1 and 0 
sequences, we find that the string of ones and zeros turns out to be the 
place notation in base 2 for the number being represented. 

Here are some examples. (10012 means 1001 in base 2.) 

10012 = 23+2° = 8+1 = 9 
11002 = 23+22 = 8+4 = 12 

1101012 = 25+24+22+20 = 32+16+4+1 = 53 
100000h = 26 +2° = 64+1 = 65 

This base 2 (or "binary") notation can be used to represent any pattern of 
bits in an integer variable, and with some practice you can mentally 
convert back and forth between base 10 and base 2. This becomes 
important if you perform certain kinds of bit manipulations. 

An important property of binary representations is that shifting left 
or right is equivalent to multiplying or dividing. Consider these exam­
ples: 

~ shift left 2 places 
9 $c/s$ 2 = 10012 $c/s$ 2 = 1001:00~ = 36 
(left shift 2 is like multiplying by1221 or 4) 

~shift left 3 places 
9 $cls$ 3 = 1001:00~2 =;72 
(left shift 3 like rhultiplying by 23 or 8) 

So, a left shift of N bit positions is equivalent to multiplying by 2N. A 
right shift of N bit positions is equivalent to division by 2N (assuming no 
bits wrap around to the left end in a $cls$ of 60- N). There exists an 
"arithmetic right shift", $ars$, which is not circular but simply throws 
away any bits that fall off the right end of the word: 

Bruce
Rectangle



ADDITIONAL CALCULATION TOPICS 

thrown away 
9 $ars$ 3 = 1001 2 $ars$ 3 = ]0~1 = 1. 

This corresponds to a division by 23 , with truncation (9/23 = 9/8 which 
truncates to 1). 

A major use of the 60 bits held in an integer variable is to pack into 
one word many pieces of information. For example, you might have 60 
"flags" set up or down (1 or 0) to indicate 60 yes or no conditions, perhaps 
corresponding to whether each of 60 drill items has been answered 
correctly or not. Or you might keep fifteen 4-bit counters in one word: 
each 4-bit counter could count from zero to as high as 15 (24-1) to keep 
track of how well the student did on each of fifteen problems. Ten bits is 
sufficient to specify integers as large as 1023: you could store six 10-bit 
baseball batting averages in one word, with suitable normalizations. 
Suppose a batting average is .324. Multiply by a thousand to make it an 
integer (324) and store this integer in one of the 10-bit slots. When you 
withdraw this integer, divide it by a thousand to rescale it to a fraction 
(.324). When we discussed arrays we had exam scores ranging from zero 
to 100. The next larger power of two is 128 (27 ), so we need only 7 bits for 
each integer exam score. Eight such 7-bit quantities could be stored in 
one 60-bit word. 

How do you extract a piece of information packed in a word? As an 
example, suppose you want three bits located in the 19th of twenty 3-bit 
slots of variable "spack": 

inum<=(spack $ars$ 3) $mask$ 7 

Ix x X X X X X X X X X X X X X X X X ? xl spack 

Ix X X X X X X X X X X X X X X X X X x ?I (spack $ars$ 

I.e- fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 71 7 (111 2) 

lfa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa ? I Inurn 
Fig. 10-4. 

3) 

225 



The TUTOR Language 

226 

The number 7 is 1112 (base 2: 4+2+ 1), so it is a 3-bit quantity with all 
three bits "set" or "on" (non-zero). The $mask$ operation pulls out the 
corresponding part of the other word, the 3-bit piece we are interested in. 
In an expression (x $mask$ y), the result will have bits set (1) only in 
those bit positions where both x and y have bits set. In those bit positions 
where either x or y have bits which are "reset" or "off" (0), the $mask$ 
operation produces a 0. We could also have used a "segment" definition 
to split up the word into 3-bit segments. 

A 4-bit mask would be 15 (1l1l2) and a 5-bit mask would be 31 
(1l1112). (Again, "segment" definitions of 4 or 5 bits could be used.) You 
might even need a mask such as 1101112 (or 55) which will extract bits 
located in the five bit positions where 1101112 has bits set. There should 
be a simpler way of writing down numbers corresponding to particular 
bit patterns. Certainly, reading the number 55 does not immediately 
conjure up the bit pattern 1101112! 

A compact way of expressing patterns of bits depends on whether or 
not each set of three bits can represent a number from 0 to 7: 

I 

55 = 11011112 

~I~ 
1102 = 4+2+0 = 6 1112 = 4+2+1 = 7 

\~ 
678 = 6x81+7x8~ = 48+7 = 551~ 

(base 8) (base 10) 

Just as each digit in a decimal number (base 10) runs from 0 to 9, so do the 
individual numerals run from 0 to 7 in an octal number (base 8). Octal 
numbers are useful only because they represent a compact way of 
expressing bit patterns. With practice, you should be able to convert 
between octal and base 2 instantaneously, and between base 8 and base 
10 somewhat slower! See the table below. 

base 10 base 8 base 2 
0 0 o or 000 
1 1 1 or 001 
2 2 These 10or010 
3 3 should 11 or 011 
4 4 be 100 
5 5 memorized 101 
6 6 110 
7 7 111 

Bruce
Rectangle



ADDITIONAL CALCULATION TOPICS 

base 10 
(continued) 

8 
9 

10 
11 
12 
13 

base 8 
(continued) 

10 
11 
12 
13 
14 
15 

base 2 
(continued) 

1000 
1001 
1010 
1011 
1100 
1101 

The conversion between base 8 and base 2 is a matter of memorizing the 
first eight patterns, after which translating- 11010110111012 to octal is 
simply a matter of drawing some dividers every three bits: 

1 \101 :011 :011 :101 
11 5 I 3 I 3 I 5 = 153358 

What is 153358 in base 10? 

8~ 

5 3 3 5 = 1 x4096+5x512+3x64+3x8+5 = 58531~ 

How about the octal version of the number 79? The biggest power of 8 in 
79 is 82 (64), and 79 is 15 more than 64. In turn, 15 is lx81 +7x8f1, so: 

7919J = 1x64+1x8+7x1 = 1x82 +1x81+7x8° = 1178 

Luckily, in bit manipulations the conversions between base 2 and base 8 
are more important than the harder conversions between base 8 and base 
10. 

To express an octal number in TUTOR, use an initial letter "0": 

x $mask$ 037 

will extract the right-most 5 bits from x, because 037 = 378 = 0111112, 
which has 5 bits set. Naturally, a number starting with the letter "0" must 
not contain 8's or 9's. 

You can display an octal number with a -showo- command (show 
octal): 

showo 39 

227 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

228 

will display "00000000000000000047" on the screen (39ul=478). The 
default format is twenty (3-bit) octads, corresponding to a whole 60-bit 
word: 

showo 39,4 

will display "0047", showing just four octads. 
Now that we have discussed the octal notation, it is possible to point 

out what happens to negative numbers: 

showo -39 

will display "77777777777777777730". A negative number is the "com­
plement" of the positive number (binary 1's are changed to 0's and binary 
0's are changed to 1's). In octal, the complement of 0 is 7 (0002~1l12 = 
78), and the complement of 78 is 08' In the example shown, octal 478 is 
1001112' whose complement is 0110002' or 308' Notice that the left-most 
bit (the "sign" bit) of a negative number is always set. In order for a 
negative number to stay negative upon performing an "arithmetic right 
shift", all the left-most bits are set. So, 

yields: 
040000000000000003242 $ars$ 6 

077400000000000000032. 

Only the sign bit was set among the left-most bits before the shift (040 is 
10000(2), but after the shift the first seven bits are all set. The" circular 
left shift", $cls$, does not dQ anything special with the sign bit. 

It is interesting to see the bits set for floating-point numbers: 

calc v1¢:3 
at 1215 
write pos=«0,v1» $$ 0 for -showo-

neg=«0,-v1» 

will make this display: 

pos = 17216000000000000000 
neg = 60571777777777777777 



ADDITIONAL CALCULATION TOPICS 

Note that the negative number is the complement of the positive. The 
48-bit magnitude (6000000000000000) represents a huge integer (6x245). 
The eleven bits between the sign bit and the 48-bit magnitude give the 
power of two (-46) by which the magnitude is to be scaled (3 = 
6x245 X2-46 = 6x2-1 = 3). A bias of 20008 is added to the correct 
exponent (-46, or -568) to give an eleven-bit exponent of 17218. 
Exponents less than 20008 represent negative powers and exponents 
greater than 20008 represent positive powers. 

We have encountered octal numbers (e.g., 0327) which can be shifted 
left ($cls$) and right ($ars$) and complemented (by making them nega­
tive). Pieces can be extracted with a $mask$ operation. Additional bit 
operations are $union$, $diff$, and "bitcnt". The "bitcnt" function gives 
the number of bits set in a word: bitcnt(025) is 3, because 025 is 0101012, 
which has 3 bits set; bitcnt (-025) is 57, since the complement will have 
only 3 of 60 bits not set; and bitcnt (0) is 0. Like $mask$, $union$ and 
$diff$ operate on the individual bit positions, with all 60 done at once: 

x $mask$ y produces a 1 only where both x and y have 1 's. 
x $union$ y produces a 1 where either x or y or both have 1 's. 
x $diff$ y produces a 1 only where x and y differ. 

Note that $union$ might be called "merge", since l's will appear in every 
bit position where either x or y have bits set. The $diff$ operation might 
also be referred to as an "exclusive" union, since it will merge bits except 
for those places where both x and y have bits set. 

While $mask$ can be used to extract a piece of information from a 
word, a $mask$ that includes all but that piece followed by a $union$ can 
be used to insert a new piece of information. 

These bit operations can be used with arrays. For example, if A, B, 
and C are true arrays, the statement "C¢:A $diff$ B" will replace each 
element of C by the bit difference of the corresponding elements of A and 
B. 

Byte Manipulation 

The most common use of bit manipulations is for packing and 
unpacking "bytes" consisting of several bits from words each of which 
contain several bytes. This can lead to major savings in space. If an exam 
score lies always between 0 and 100, only seven bits are required to hold 
each score, since (27 -1) is 127. Another way to see this is to write the 
largest 7-bit quantity: 11111112 = 1778 = lx82 +7x81 +7x8li = 64+56+7 
= 127. This is one less than 2008, which requires an eighth bit. We can fit 

229 



The TUTOR Language 

230 

eight 7-bit bytes into each 60-bit word. Happily, TUTOR will do the 
bookkeeping, as we saw earlier: 

define segment,scores=n31,7 

This definition makes it possible to work with this "segmented" array as 
though it were an ordinary array: 

calc ss<:=scores(3) 
scores( 17)<:=83 

etc. 

These refer to the 3rd and 17th bytes. The first eight 7-bit bytes reside in 
n31, with the last 4 bits unused. The next eight bytes are in n32, etc. The 
17th byte is the first 7 -bit byte in n33. 

Just as it is possible to give up one bit of a 60-bit wor3 in order to 
have negative as well as positive numbers, so it is possible to have both 
positive and negative numbers stored in a segment array: 

define segment,temp=v52,8,signed 

calc temp(23)<:=-95 

With 8-bit bytes we can have numbers in the range of ±127. The word 
"signed" may be abbreviated by "s". 

Now that you understand the bit structure of a variable, you should 
be able to understand the table (Table 10-1) provided earlier of segment 
ranges and the number of segments per variable. Look at the table now 
and see whether you can check the entries in the table. 

Vertical Segments 

We might call the segments discussed so far "horizontal" segments 
(the segments move horizontally across each word). It is possible to 
define "vertical" segments (each of which occupies only part of a word): 
successive segments are found in the same position in successive 
words, rather than in different positions within the same word. As an 
example, "define segmentv,left=n51,1,30" defines vertical segments 
each occupying the left half of words n51, n52, n53, etc. Each segment 

Bruce
Rectangle



ADDITIONAL CALCULATION TOPICS 

starts in bit position 1 of each word, and each segment is 30 bits long. The 
right halves of the words could be specified with "define segmentv, 
right=n51,31,30", whose elements begin in the 31st bit position and are 
30 bits wide. An "s" can be added to denote signed segments, as with 
horizontal segments. 

Aside from the intrinsic usefulness of this kind of segmenting of 
words, the simpler structure permits TUTOR to process vertical segments 
much faster than horizontal segments, and only slightly slower than 
normal whole-word variables. 

You can save space with true arrays by putting the elements in 
vertical segments. The -define- statement looks like "define arraysegv, 
A(10)=n5,3,12,s". This example defines a ten-element array, with A(l) 
represented by a 12-bit signed segment starting in bit position 3 of n5. It 
is not yet possible to define a true array in horizontal segments. 

Alphanumeric to Numeric: The -compute­
Command 

The -store- command analyzes the judging copy of the student's 
response character string and produces a numerical result. This is 
actually a two-step process. First, the character string is "compiled" into 
basic computer instructions and then these machine instructions are 
"executed" to produce the numerical result. During the compilation 
process the "define student" definitions and the built-in function defi­
nitions (sin, cos, arctan, etc.) are used to recognize the meaning of names 
appearing in the character string. Numbers expressed as alphanumeric 
digits are converted to true numerical quantities. For example, the 
character string 49 becomes a number by a surprisingly indirect process. 
The character code for "4" is 31 since "z" is 26, "0" is 27, etc. The 
character code for "9" is 36. The number expressed by typing 49 is 
obtained from the formula: 

10(31-27)+(36-27) or 10("4" -"0") +("9" -"0") 
10(4)+(9) 

40+9 
49 

For these and similar reasons, the compilation process is ten to a hundred 
times slower than the execution process. Therefore, TUTOR attempts to 
compile the student's response only once, while the resulting machine 
instructions may be used many times. 

231 

Bruce
Rectangle



The TUTOR Language 

232 

The first -store-, -ansv-, -wrongv-, -storeu-, -ansu-, or -wrongu­
command encountered during judging triggers compilation. All these 
commands following the first one simply reuse the compiled machine 
instructions. If a -bump- or -put- makes any changes in the judging copy, 
a following -store- or related command will have to recompile. Similarly, 
a "judge rejudge" will force recompilation by any of these commands. 
Note that re-execution is always performed even if recompilation isn't, 
because the student might refer to defined variables whose values have 
been altered. 

While -store- will compile and execute from the judging copy, the 
regular -compute- command will compile and execute from any stored 
character string: 

For example: 

compute result,string,#characters,pointer 

compute v35,v2,v1,v22 

/ '--v--'\ 
character 

return string pointer to 
numerical 
result 

machine instructions 

After compilation, the "pointer to machine instructions" contains the 
location of the machine instructions in a special -compute- storage area. 
You must zero the pointer at first to force compilation. TUTOR will then 
set the pointer appropriately, so that re-executions of the -compute­
command can simply re-execute the saved machine instructions. Here is a 
unit which permits the student to plot functions of interest to him or her. 

define 

define 

origin 
bounds 
scalex 
sealey 
* 

student 
x=v1 
ours,student 
result=v2,string=v3,point=v35 
100,250 
0,-200,300,200 
10 
2 

unit graph 
next graph 



ADDITIONAL CALCULATION TOPICS 

back graph 
axes $$ display the axes 

2 .• 

:: N ,~ 

labelx 
labely 
at 
write 
arrow 
storea 
ok 
calc 
compute 
goto 

1 
0.2 
3105 
Type a function of x: 
where+2 
string,jcou nt 

x<:=point<:=0 
result,string,jcount,point 
formok,x,badform ... I \ .J \~ gat 0,result $$ draw from here 

:: "'\~' ,,\5

J

'-¥-+-( I, ~I;'\~ 
-1.2 

-1.6 

-2.B 

dote 
compute 
goto 
gdraw 
Splot 
* 

Splot,x<:=.1,10,.1 
result,string,jcount,point 
formok,x,badform 
;x,result 

badform 
3207 

Fig. 10-5. 

unit 
at 
writec 
judge 

form ok, ... $$ tell what's wrong 
wrong 

Different functions can be superimposed by changing the response 
instead of pressing NEXT or BACK. The first -compute- in this unit 
calculates the value of the student's function for x equal to zero. The -gat­
command positions us at location (0, result) so that the first -gdraw- will 
draw a line starting at that point. The system variable "form ok" has the 
value -1, if compilation and execution succeed; 0 if compilation suc­
ceeds but execution fails (due to such errors as trying to take the square 
root of a negative number); and various positive integral values for 
various compilation errors (missing parentheses, unrecognized variable 
names, etc.). 

Note that predefined functions can be more easily plotted with a 
-funct- command. For example, the student could specify a value for "n", 
and you could plot a polynomial simply by using "funct xn,x<:=0,10,.1". 
But, you must use -compute- if the student is permitted to try arbitrary 
functions of his or her own choosing. 

As another example, the PLATO lesson "grafit" (written by this 
author) permits the student to write up to fifteen statements in the grafit 

233 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

234 

language and execute his or her program to produce graphical output (as 
seen in Fig. 10-6); 

x 

Welcome to GRAFIT 
V4lot4lo.0 

X4!ox+vd 
V<OV+ [- Oum) x 3] d 

~ ht+d 
5 ioto 2 

f ~ 
7 

IS 
11 
12 
13' 
1 ~ 

2.SSS 15 

(HELP l~ avai lable) 

Pre~~ 

-STOP-
to 
quit. 

.-2.SS·~-----------------' 

S.IIfIlfS B.SSIlf 
Pr-e.'3!3 BACK to clean up ~creen. 

Fig. 10-6. 

This student's program calculates the motion of a mass oscillating on the 
end of a non-standard spring. The two curves are the superposition of 
running the program twice with different values of the parameters. The 
heart of this lesson is a loop through a -compute- command with string, 
character count, and point all being indexed variables. The index is the 
line number, from 1 to 15. Each student response is analyzed using a 
-match- command looking for keywords such as "goto". Then the rest of 
the response is filed away with a -storea- into the string storage area 
corresponding to that line number. The 15 pointer variables are zeroed in 
the "ieu" (initial entry unit) to insure that when the student returns to a 
PLATO terminal after several days TUTOR won't be confused over 
whether the strings have been recently compiled or not. Also, whenever 
the student changes one of his or her statements, the corresponding 
pointer is zeroed in order to force recompilation of the altered character 
string. The student can press DATA to initialize parameters, LAB to 
specify what variable to plot against what variable, and HELP for a 
description of the grafit language. The student define set defines all 26 
letters as variables the student can use. 



ADDITIONAL CALCULATION TOPICS 

Note that even though s, i, and n have been defined in the student 
define set, the student can use the "sin" function. The reason that the 
student's "sin" is not interpreted as sxixn is that TUTOR looks for the 
longest possible name in a string of characters typed by the student. One 
difference between the handling of student expressions and author 
expressions is that students cannot reference system variables such as 
"where", "anscnt", or "data" (the numerical value of the DATA key). If 
you want the student to be able to use "where", define it in the student 
define set as "where=where". While authors are discouraged from using 
primitive names such as v47 (except in a -define- statement), students are 
not permitted to use primitives at all. This is done to protect the author's 
internal information. Similarly, students cannot use the assignment 
symbol (¢=), except in a -compute-, unless there is a "specs okassign". 

It should be mentioned that while -compute- converts alphanumeric 
information into a numerical result, there is an -itoa- command that can 
be used to convert an integer to an alphanumeric character string. Most 
often, however, the -pack- command with embedded -show- commands 
will be used to convert non-integer as well as integer values to the 
corresponding character strings. 

The -find- Command 

The -search- command discussed in Chapter 8 is character-string 
oriented and will locate 'dog' even across variable or word boundaries: 
the "d" might be at the end of one word and the "og" at the beginning of 
the next word. The -find- command, in contrast, is word oriented. It will 
find which word contains a certain number or character string: 

find 372ln1150In125~ 

I ( starti~ looking return the 
f~~ 372 at n1 through location 

50 words 

If nl contains 372, n125 will return the value 0; if n2 is the first word 
which contains 372, n125 will be 1; etc. If none of the 50 words contains 
372, n125 will be set to -1. Notice that in -search- the return is 1, not 0, if 
the string is found immediately. This is due to the fact that in character 
strings we start numbering with character number 1. On the other hand, 
here the first word is n(1 +0). 

Do not use v-variables in the first two arguments of -find- because 
-find- makes its comparisons by integer operations. The first argument 
can be a character string such as 'dog' or "dog". You can look at every 3rd 
word by specifying an optional increment: 

235 

Bruce
Rectangle



The TUTOR Language 

236 

find "cat",n1,50,n125,3 
~ 

optional 

This will look for "cat" in n1, n4, n7, etc., and n125 would be returned 0, 
or 3, or 6, etc. Negative increments can be used to search backwards from 
the end of the list. 

You can also specify that a "masked equality search" be made: 

find "cat",n1 ,50,n125, 1,0777700'-,. 
'-r-' mask 

not optional 

In this case, n125 will be zero if ((n1 $diff$ "cat") $mask$ 0777700] is 
zero. The mask specifies that only a part of the word will be examined. 
The increment must be specified, even if it is one, to avoid ambiguity. 

There is a -findall- command which will produce a list of all of the 
locations where something was found, rather than producing locations 
one at a time. 

The -exit- Command 

Suppose you are seven levels deep in -do-so That is, you have 
encountered seven nested -do- statements on the way to the present unit. 
The statement "exit 2" will take you out two levels. The next statement 
to be executed is the statement which follows the sixth -do-. A blank -exit­
command (blank tag) takes you immediately to the statement following 
the first -do-. (Such operations are occasionally useful.) Notice that 
encountering a unit command at the end of a done subroutine will cause 
an automatic "exit 1". It is superfluous to put "exit 1" at the end of a 
unit, since this effect is automatic. 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



Manipulating Data Bases 

In this chapter we will discuss the tools available in TUTOR for 
creating and using "data bases" (small or large blocks of data such as test 
scores, population statistics, map coordinates, etc.). In the process of 
discussing these tools we will also learn more about the internal workings 
of the PLATO system. 

The -common- Command 

The "student variables" vi through v 150 are associated with the 
individual student. It is possible to use "common variables" which are 
common to all those students studying a particular lesson. These com­
mon variables can be used to send messages from one student to another, 
to hold a bank of data used by all the students, to accumulate statistics on 
student use of the lesson, to contain test items in a compact, standardized 
form, etc. 

As a first example of the use of the -common- command, let's count 
the number of students who have entered our lesson. We will also count 
how many of these students are female: 

~ common 2 $$ two common variables 
C3.S define total =vc1 ,females=vc2 

(Continued on the next page.) 

1 1 

237 

Bruce
Rectangle



The TUTOR Language 

238 

* 
unit 
calc 
at 
write 
arrow 
answer 
calc 
answer 
no 
write 
endarrow 
at 
write 

ask 
total4=total+ 1 
1215 
Are you a female? 
1415 
yes 
females4=females+ 1 
no 

Yes or no, please! 

1615 
There are «s,totalj> students, of whom 
«s,femalesj> are female. 

The -common- command tells TUTOR to set up two common variables, 
vel and vc2, which we have defined as "total" and "females". These 
common variables are automatically initialized to zero before the first 
student enters this lesson. The first student increments "total" to one 
("calc total4=total + I") and may also increment "females". The second 
student to enter the lesson causes "total" to increase to two and may also 
change "females". Each student is shown the present values of "total" 
and "females", which depend on what other students are doing. We must 
use common variables vel and vc2 rather than the student variables vI 
and v2 because the student variables cannot be directly affected by 
actions of other students. Another way to see this is to point out that when 
there are five students in this lesson, they share a single vel and a single 
vc2, whereas they each have their own v 1 and their own v2: there are five 
vI's and five v2's but only one vel and vc2. 

Integer common variables are ncl, nc2, etc., and indexed common 
variables are written as vc(index) or nc(index). 

The statement "common 2" tells TUTOR to associate a two-word 
set of common variables with this lesson. For reference purposes, it is 
good sty Ie to place the -common- command near the beginning of the 
lesson. There can be only one -common- statement in a lesson. Like 
-define-, -vocab-, and -list-, the -common- command is not executed for 
each student. Rather, when TUTOR is preparing the lesson for the first 
student who has requested it, a set of common variables is associated 
with the lesson and all these common variables are initialized to zero. 
Additional students entering the lesson merely share the common varia­
bles previously set up. 

Suppose a class of fourteen students uses our lesson from 10 a.m. to 
11 a.m. The fourteenth student eomes at 10:05 and gets a message on the 

Bruce
Rectangle



MANIPULATING DATA BASES 

screen saying "There are 14 students, of whom 8 are female". As long as 
the lesson is in active use, each new student who enters the lesson 
increases "total" (vel). However, when all the students leave at 11:'00, the 
lesson is no longer in active use and will eventually be removed from 
active status to make room for other lessons. When another class comes at 
3:00 p.m., the lesson is not in active use and TUTOR must respond to the 
first student's request for the lesson by preparing the lesson for active use. 
In the preparation process the statement "common 2" tells TUTOR to 
set up two common variables and initialize them to zero. The first student 
to enter the lesson at 3:00 is told "There are 1 students, of whom 1 are 
female". She is not told "There are 15 students, of whom 9 are female", 
despite the fact that the previous student (at 10:05 that morning) had been 
told there were 14 students, 8 female. The "common 2" statement will 
cause the common variables to be zeroed every time the lesson is 
prepared for active use. 

The type of common which is set up by the statement "common 2" 
is called a "temporary common". It lasts only as long as the lesson is in 
active use, and its contents are initialized to zero whenever the lesson is 
moved from inactive to active status. Temporary common can be used for 
such things as telling the students how many students are present, what 
their names are, and whether a student at another terminal who has 
finished a particular section of the lesson is willing to help a student who 
is having difficulties. Messages can be sent from one student to another 
through a temporary common by storing the message in the common area 
with an identifying number, so that the appropriate student can pick up 
the message and see it with a -showa-. The lesson simply checks 
occasionally for the presence of a message. 

When,a student signs out you usually want to change the temporary 
common in some way. For example, if you are keeping a count of the 
number of students presently using the lesson, you increase the count by 
one when a student signs in and you decrease the count by one when the 
student leaves. The -finish- command lets you define a unit to be executed 
when the student presses shift-STOP to sign out: 

finish 

unit 
calc 

decrease 

decrease 
count¢:count-1 

In this case unit "decrease" will be done each time a student signs out. 
Normally the -finish- command should be put in the "ieu". As with 
-imain-, the pointer set by the -finish- command is not cleared at each new 
main unit. A later -finish- command overrides an earlier one, and 

239 



The TUTOR Language 

240 

"finish q" or a blank -finish- statement will clear the pointer. Like all 
unit pointer commands, -finish- can be conditional. Only a limited 
amount of processing is permitted in a -finish- unit to insure that the 
student can sign out promptly. 

We can keep a permanent, on-going count of students who enter the 
lesson by using a "permanent common". Instead of writing "common 
2", we write" common italian,counts,2", where "italian" is the name of 
a permanent lesson storage space and "counts" is the name of a common 
block stored there. This is the same format used for character sets (the 
-charset- command) and micro tables (the -micro- command). When the 
common block is first set up in the lesson space, its variables are 
initialized to zero. Let's suppose that the fourteen students who come in 
at 10:00 a.m. are the very first students ever to use our lesson. The 
statement "common italian,counts,2" will cause TUTOR to fetch this 
(zeroed) common block from permanent storage. As before, the four­
teenth student arrives at 10:05 and is told "There are 14 students, of 
whom 8 are female". At 11:00 a.m. these students leave and our lesson is 
no longer in active use. At some point, room is needed for other active 
lessons (and commons), at which point our permanent common, with its 
numerical contents of 14 (students) and 8 (females) is sent back to perm­
anent storage. At 3:00 p.m. the first student (a female) of the afternooq 
class causes TUTOR to prepare the lesson and retrieve the permanent 
common from permanent storage without initializing the common varia­
bles to zero. The result is that she gets the message "There are 15 
students, of whom 9 are female". (There is an -initial- command which 
can be used to define a unit to be executed when the first student 
references the common. This makes it possible to perform initializations 
on a permanent common.) 

The key feature of permanent common is that it is retrieved from 
storage when needed and returned in its altered state to permanent 
storage when the associated lesson is no longer active. In our case, we 
could enter the lesson months after its initial use and see the total number 
of students who have entered the lesson during those months. Other uses 
of permanent common include the storage of data bases accessed by the 
students, such as census data in a sociology course or cumulative 
statistical data on student performance in the course. 

The Swapping Process 

Before discussing additional applications of common variables, it is 
useful to describe the "swapping" process by which a single computer 
can appear to interact with hundreds of students simultaneously. The 



MANIPULATING DATA BASES 

computer actually handles students one at a time but processes one 
student and shifts to another so rapidly that the students seem to be 
serviced simultaneously. In order to process a student, the student's 
lesson and individual status (including the variables vI through v 150) 
must be brought into the "central memory" of the computer. After a few 
thousandths of a second of processing, the student's modified status is 
transferred out of the central memory (to be used again at a later time) and 
another student's lesson and status are transferred into central memory. 
This process of transferring back and forth is called "swapping," and the 
large storage area where the lessons and status banks are held is called the 
"swapping memory." The swapping memory must be large enough to 
hold all the status banks and lessons which are in active use; that is, in 
use by students presently working at terminals. It is not necessary for the 
swapping memory to also hold the many lessons not presently in use nor 
the status banks for the many students not using the computer at that 
time. These inactive lessons and status banks are kept in a still larger 
"permanent storage" area. (See Fig. 11-1.) 

Permanent ~toraie 
Thou~and~ of in­
active le~~ons 
and inactive 
~tudent ~tatu~ 

bank~. 

~ ... ., 
~ 

~ 

~ 
~ 
~ ... 
ia 

Central 
memory 

Swapp i nli 1oa----'~"'-----;e.I 
memory 

Hundreds of active 
les~ons and active 
~tudent ~tatu~ 

bank~. 

Fig. 11-1. 

Q!J!:: lesson. 
Qm: ~tudent 
~tatu~ bank. 

241 



The TUTOR Language 

242 

When a student sits down at a terminal and identifies herself as "Jane 
Jones" registered in "french2a", her status bank is fetched from perma­
nent storage to see what lesson she was working on and where in the 
lesson she left off last time. If the lesson is already in the swapping 
memory (due to active use by other students), Jane Jones is simply 
connected up to that lesson, and, as she works through the lesson, her 
lesson and her changing status bank will be continually swapped to 
central memory. If, on the other hand, the required lesson is not presently 
in active use, it must be moved from permanent storage to the swapping 
memory. (This involves a translation of the TUTOR statements into a 
form which the computer can process later at high speed.) This fetching 
of the inactive lesson from permanent storage to prepare an active version 
in the swapping memory will typically be done once in a half-hour or 
more often as the student moves from one lesson to another. In contrast, 
the swapping of the active lesson to central memory happens every few 
seconds as the student interacts with the lesson. Therefore, the swapping 
transfer rate must be very high (whereas a low transfer rate between 
permanent storage and the swapping memory is adequate). 

When Jane Jones leaves for the day, her status bank is transferred 
from the swapping memory to permanent storage. This makes it possible 
for her to come back the next day and restart where she left off. 

The question arises as to why there are three different memories: 
central memory, swapping memory, and permanent storage. For example, 
why not keep everything in the central memory where students can be 
processed? It turns out that central memory is extremely expensive, but 
permanent storage in the form of rotating magnetic disks is very cheap. 
Why not do swapping directly between permanent storage and central 
memory? The rate at which lessons can be fetched from permanent 
storage is much too slow to keep the computer busy: the computer would 
handle only a small number of students because a lot of time would be 
wasted waiting for one student to be swapped for another. If the cost of 
the computer were shared by a small number of students, the cost would 
be prohibitively high. In order to boost the productivity of the computer, 
a special swapping memory is used which permits rapid swapping. This 
minimizes unproductive waiting time and raises the number of students 
that can be handled. The swapping memory is cheaper than central 
memory but considerably more expensive than permanent storage. 

There is, therefore, a hierarchy of memories forced on us by 
economic and technological constraints. The expensive, small central 
memory is the place where actual processing occurs, and there is never 
more than one student in the central memory. Material is swapped back 
and forth to a large medium-cost swapping memory whose most impor­
tant feature is a very high transfer rate to central memory. Permanent 
storage is an even larger and cheaper medium for holding the entire set of 

Bruce
Rectangle



MANIPULATING DATA BASES 

lessons and student status banks. It has a low transfer rate to the 
swapping memory. 

Common Variables and the Swapping Process 

N ow it is possible to describe more precisely the effect of a -common­
statement in a lesson. Just as an individual student's lesson and status 
bank (including the student variables vI through v 150) are swapped 
between central memory and the swapping memory, so a set of common 
variables associated with the lesson is swapped between central memory 
and the swapping memory. There is in central memory an array of 1500 
variables, called vel through vel500, into and out of which a set of 
common variables is swapped. As long as the -common- statement 
specifies a set of no more than 1500 common variables, this set will 
automatically swap into and out of the central memory array vel to 
vel500. (See Fig. 11-2.) (There is a -comload- command which can be 
used to specify which portions of a common to swap if the common 
contams more than the 1500 variables which will fit into central memo­
ry.) All 15'00 variables in the central memory array are set to zero before 
bringing a lesson, status bank, and common into central memory, so that 
any of these variables not loaded by the common will be zero. 

"tudent Bi II 
I I 

student Nei I 
I I 

4 common cont4inin~ 
up to 15mm v4ri4bles 

~wap Central memor 

vel 

swap throu~h 

yel5mm 

Fig. 11-2. 
243 

Bruce
Rectangle



The TUTOR Language 

244 

Note that the student status banks and commons are swapped in and 
out of central memory in order to retain any changes made during the 
processing in central mcmory. On the other hand, lessons are brought 
into central memory but are not sent back since no changes are made to 
the lesson. (A lesson only has to be copied into but not out of central 
memory.) The separation of the modifiable status banks and commons 
from the unchanging lessons makes it possible for a single copy of a 
lesson to serve many students. 

It is dangerous to use vc-variables without a -common- statement or 
to use vc-variables outside the range loaded by the common (e.g., 
referring to vc3 when there is a "common 2" statement in the lesson). 
For example, consider this sequence in a lesson which has no -common­
statement: 

calc vc735<:=18.34 
pause 2 
show vc735 

This will show 0, not 18.34. The "pause 2" statement causes this 
student's material to be swapped out to the swapping memory for two 
seconds while many other students are processed. When the student is 
swapped back into central memory, all the vc-variables are zeroed. As a 
matter of fact, vc735 may temporarily take on many different values 
during those two seconds as different students are processed. On the 
other hand, a "common 800" would insure that vel through vc800 
would be saved in the swapping memory and restored after two seconds, 
so that the "18.34" stored in vc735 would again be available to be shown 
(unless it had been changed by a student using the same common who 
was processed during the two-second wait). Similarly, because the 
student variables v 1 through v 150 are part of the swapped student status 
bank, the sequence: 

calc v126<:=3.72 
pause 2 

Bruce
Rectangle



MANIPULATING DATA BASES 

show v126 

will correctly show "3.72". The contents of the student variables cannot 
get lost in the swapping process because these variables are saved in the 
swapping memory and restored to central memory the next time this 
student is processed. 

The fact that common variables are shared by all students studying 
the lesson is extremely useful but can cause difficulties if you are not 
careful. Suppose you want to add up the square roots of the absolute 
values of vcl01 through vcl000: 

calc totak=0 
doto 8sum,index¢=101, 1000 

totaI¢=totaI + [abs(vc(index) )].5 
8sum 
show total 

This iterative calculation will take longer than one "time-slice" (the 
computing time TUTOR gives you before interrupting your processing to 
service other students). You are swapped out and will be swapped back 
into central memory later to continue the computation. It might take 
several time-slices to complete the computation, and in between your 
time-slices other students are processed. This time-slicing mechanism 
insures that no one student can monopolize the computer and deny 
service to others. Suppose two students, Jack and Jill, are studying this 
lesson and sharing its common. Suppose that Jack has reached the part of 
the lesson that contains the -do to- shown above. If, at the same time, Jill 
runs through calculations that modify vcl01 through vcl000, her modifi­
cations will be made during the interruptions in Jack's processing. The 
total that Jack calculates will, therefore, be based on changing values and 
will not be the total at a particular instant. Jack calculates a partial total, 
Jill makes some changes, Jack continues to do more calculations in the 
-doto-, then Jill makes further changes, etc. At the end Jack has a peculiar 
total made up of partial totals made at different times. Even more drastic 
things will happen if "total" is itself a common variable: Jill might do 
"total¢=0" right in the middle of Jack's summation! 

245 

Bruce
Rectangle



The TUTOR Language 

246 

If it is necessary to get an accurate total at a specific instant, it is 
necessary to lock out Jill and other students from modifying common 
until the totaling is complete. This is done by doing a "reserve common" 
statement before starting Jack's calculation and a "release common" 
statement after the calculation is complete. The -reserve- command 
checks to make sure no other student has reserved the common, and then 
reserves the common. The system variable "zreturn" is set to -1 if the 
-reserve- was able to get control of the common. Otherwise "zreturn" is 
set to the station number of the student who had previously reserved the 
common. Normally, if you can't get the common, you loop waiting for the 
other person to do a "release common": 

8again 
reserve common 
branch zretu,rn,x,8again 

Notice that you must reserve and release common for Jill as well as for 
Jack (doing it for one but not the other will not prevent the other from 
looking at or changing the common). 

Don't forget the "release common" for a student, or other students 
will get hung up waiting for the common to be available. When a student 
who has reserved a common signs out of the lesson, TUTOR automatical­
ly releases the common. 

N ate that a lock is certainly needed if different students are storing 
information into the same area of common. There is often no problem 
with having different students reading information out of the same area 
of common and no problem when storing information in different areas of 
common. Logical conflicts are most serious when modifying the same 
part of common. However, even in this case there are usually no 
problems. In the example of counting the number of students in the 
lesson, we simply execute "vc=vcl + 1", which cannot cause any prob­
lems since all of the modifications are completed in one simple step. 
(Note, however, that a very complicated -calc- statement, particularly one 
involving multi-element array operations, may take more than one 
time-slice to be performed.) 

The -storage- Command 

In certain applications 150 individual student variables are not 
sufficient, even when using segmented variables. It is possible to set up 

Bruce
Rectangle



MANIPULATING DATA BASES 

extra storage of up to 1500 variables to give a total of 1650 variables that 
are individual, not shared in a common. A "storage 350" statement will 
cause a storage block of 350 variables to be set up in the swapping 
memory for each student who enters the lesson. Like -common-, the 
-storage- command is not "executed" (it is rather an instruction to 
TUTOR to set up storage when the student enters the lesson). Like 
temporary common, the storage variables are zeroed when the storage is 
set up. 

A -transfr- command can be used to move common or storage 
variables from swapping memory into the student variables or into the 
"vc" area. Usually, however, common is loaded automatically into the 
"vc" area. If the common is larger than 1500 variables, a -com load­
command must be used to specify which part of this large common is to 
be swapped into and out of which section of vel through vel500. In the 
case of -storage-, there is no automatic swapping. Instead, a -stoload­
command is used to specify what parts of the storage are to be moved into 
what area of the "vc" variables. Here is a typical example: 

common 
storage 
st%ad 

1000 
75 
vc1001,1,75 

The common will be automatically swapped in and out of vel through 
vel000. The 75 storage variables will be swapped in and out of vel001 
through vel075. It is good form to define all these matters; 

define 

common 
storage 
st%ad 

calc 

com/ong=1000,st/ong=75 
stbegin=vc(com/ong+1 ) 
(etc.) 
com/ong 
st/ong 
stbegin,1,st/ong 

stbegin<=37.4 

While -common- and -storage- are "non-executable" commands, -com­
load- and -stoload- are executable, so that swapping specifications 
can be changed during the lesson. 

The student's current variables vI through v 150 are saved with other 
restart information when he or she signs out. Therefore, when the student 
signs in the next day, these variables will have the values they had when 
the student left. Storage variables are not saved, however. All storage 
variables are initialized to zero when the storage block is set up upon 

247 

Bruce
Rectangle



The TUTOR Language 

248 

entry into the lesson, as with temporary common. If it is necessary to file 
away more than the standard 150 student variables, you could split up a 
common into different pieces for individual students. For example, if you 
need to save 200 extra variables for no more than 20 students, you could 
split up a 4000-variable common into 20 pieces each containing 200 
variables. An alternative is to use "dataset" operations, which permit you 
to directly control the transfer of blocks of individual data between the 
permanent storage (magnetic disks) and the swapping memory. 

Using "datasets" 

A PLATO "dataset" is a file of records kept in the permanent 
(magnetic disk) storage. You can write some data out to the 5th record of 
the dataset, then get it back months later simply by reading back the 5th 
record of that dataset. Each record is made up of many words, and the 
record word size is specified at the time the dataset is created. (Currently 
the minimum record size is 64 words.) One record might, for example, 
hold exam scores for a particular student. 

In order to perform operations on a dataset, you first must execute a 
-dataset- command to tell PLATO which of your datasets you are going to 
be working on at the moment. You can then execute any number of 
-dataout- commands to send data out to the dataset, and any number of 
-datain- commands to read such information back. You can use a -reserve-
command to reserve specific records, similar to using a "reserve com­
mon". You must use a -release- command to permit others again to 
manipulate those records. (For details, see the PLATO on-line "aids".) 

Sorting Lists 

When manipulating a data base it is often necessary to sort a list of 
items into alphabetic or numeric order. The -sort- (numeric) and -sorta­
(alphabetic) commands will transform a disordered list into a sorted list. 
These commands will also sort an associated list of items at the same 
time. For example, you might have student names in one part of a 
common, and corresponding grades in another part of the common. You 
could use a -sorta- command to place the names in alphabetical order, and 
at the same time you could have the -sorta- command similarly re-order 
the grades to correspond with the altered order of the students. (See the 
PLATO on-line "aids" for details.) 

Bruce
Rectangle



Miscellany 

This chapter will acquaint you with additional features of TUTOR 
and PLATO. See Appendix A for sources of additional information. 

Other Terminal Capabilities 

We have emphasized the keyboard and plasma display panel as the 
main input and output devices used in communicating with the student. 
Other devices which may be used include a projector of color photo­
graphs, a touch panel, a random-access audio playback device, and other 
specialized input-output devices. All of these terminal-associated devices 
are easily managed by TUTOR. 

The plasma display panel is flat and transparent, which makes it 
possible to project photographs on the back, superimposing color photo­
graphs with plasma-panel text and line drawings. There exists a micro­
fiche projector for the PLATO terminal which will project any of 256 
color photos, with fractional-second access time to any of these 256 
pictures. (A "microfiche" is a sheet of film carrying many tiny pictures.) 
Microfiches can be made from a set of ordinary 35mm slides. Students or 
teachers can insert the appropriate microfiche in the terminal for the 
subject to be studied. The -slide- command selects any of the 256 photos: 
"slide 173" will project the 173rd photo. Additional options on the 

12 

249 

Bruce
Rectangle



The TUTOR Language 

250 

-slide- command permit the independent control of a shutter in the 
projector. 

The touch panel is a device which puts a grid of 16 vertical and 16 
horizontal infrared light beams just in front of the plasma panel. When a 
student points at the panel, he breaks a horizontal and vertical beam. The 
information as to which beams were broken is sent to the computer as a 
"key" and the lesson can use this information to move a cursor, choose a 
topic pointed at, etc. 

We discussed in Chapter 8 how to know where the student touched 
the screen. Another way is to use the information in the system variable 
"key", which contains the last "key" input from the student, whether it 
came from the keyboard, the touch panel, or some other external input 
device. Here is a unit which will analyze the inputs: 

unit 
next 
enable 
pause 
goto 
write 
unit 
write 

* 
unit 
calc 

write 

* 
unit 
write 

getkey 
getkey 

(key $ars$ 8),x,keyset,touch,extin,x 
Impossible! 
keyset 
You pressed a key 
on the keyboard. 

touch 
x¢'(key $ars$ 4) $mask$ 017 
y¢'(key $mask$ 017) 
You touched location 
x=«s,x» ,y= «s,y». 

extin 
The external input 
was «s,key $mask$ 0377» 

The -enable- command permits touch inputs as well as inputs from any 
device connected to the external input connector at the back of the 
PLATO terminal. (The external input device might be a temperature 
sensor, an analog-to-digital converter, etc.) Without an -enable- command 
these inputs are ignored. A -disable- command will also cause inputs to 
be ignored. The system variable "key" contains a 10-bit integer (see the 
section on bit manipulations in Chapter 9): the most significant or 
left-most two bits identify the source of the key (0 for key set, 1 for touch 
panel, 2 for external input), and the least significant or right-most eight 



bits contain the actual data (which keyset button, which touch panel 
beams, what external data). In the case of the touch panel, the eight data 
bits contain four bits of x and four bits of y to specify a position. A 
succession of external inputs can also be retrieved with a single -collect­
command. 

If an -enable- command is placed just after an -arrow-, touch inputs 
can be accepted. There is a -touch- judging command whose tag specifies 
a screen location (and optionally a spatial tolerance). The -or- command is 
particularly useful here: 

arrow 2513 
enable 
touch 1215 
or 
answer book 
write Yes, "libro" means book. 

The student will get the same message whether he or she types "book" or 
points at a picture of a book displayed at location 1215. (The -or­
command can be used to make synonomous any judging commands. The 
system variable "anscnt" will be the same for all judging commands 
linked by -or-.) 

There is a random-access audio device which stores twenty minutes 
of speech, music, or other sounds. Segments as short as one-third second 
can be accessed in a fraction of a second, no matter where the segment is 
located on the twenty-minute magnetic disk. As with microfiche, students 
can change the disks themselves. There is a -play- command to choose a 
section of the disk to play music or talk to the student. 

Other devices can be connected to the external output connector at 
the back of the PLATO terminal and controlled with the -ext- command. 
The -ext- command can send up to sixty 16-bit quantities per second to a 
device. Among the interesting devices using this capability is a "music 
box" that plays four-part harmony. 

Student Response Data 

A crucial aspect of TUTOR on the PLATO system is that student 
response data can be collected easily to aid authors in improving lessons. 
Detailed information can be collected: unanticipated "wrong" responses 
(which may have been correct but inadequately judged), requests for 

MISCELLANY 

251 

Bruce
Rectangle



The TUTOR Language 

252 

help, words not found in a -vocabs-, etc. Summary information can also 
be collected: amount of time spent in an area of a lesson, number of errors 
made, number of help requests, etc. These detailed and summary data 
provide an objective basis for revising lessons. 

A -dataon- command in a lesson turns on the automatic data 
collection machinery. Students registered in courses with associated 
response data files will have their responses logged in their data files. 
When registering students in a course, specific data collection options can 
be chosen. For example, one might collect only responses judged 
"no" (unanticipated incorrect responses). Anticipated correct responses 
(judged "ok") and anticipated incorrect responses (judged "wrong") 
would not be logged. This is often done because the anticipated re­
sponses are precisely those for which the lesson is already replying in a 
detailed, appropriate manner to the student. Here we see the difference 
between judge "no" (unanticipated) and judge "wrong" (anticipated). In 
this connection, -wrong-, -wrongv-, and -wrongu- make a "wrong" 
judgment, whereas the -no- command makes a "no" judgment. 

The -area- command is used to divide a lesson into sections, each of 
which will produce an area summary in the data file. Each time the 
student encounters another -area- command, a summary of the previous 
area is placed in the data file. The area summary includes student name, 
area name, amount of time spent in the area, number of -arrow-s, number 
of ok/wrong/no responses, number of helps requested and found, etc. 
This summary data makes possible a statistical treatment of lesson data 
which can pinpoint weak areas. 

The -output- and -outputl- commands permit you to write your own 
information and messages into the datafile. This supplements the auto­
matic data logging invoked with -dataon- and -area-. 

While PLATO provides a standard mechanism for looking through 
data files (including sorting the data), you can also read back this 
information and process it yourself. For example, the -readd- command 
will read area summaries or -outputl- information from a datafile previ­
ously specified by a -readset- command. 

Additional Tools for Teaching Foreign Languages 

Usually in a lesson on a language such as Russian, which uses a 
special alphabet, the student will answer some questions in English and 
some questions in the foreign alphabet. The responses in the foreign 
alphabet require a "force font", or a "force font,left" for leftward­
going languages such as Arabic, Hebrew, and Persian. Sometimes a 

Bruce
Rectangle



"force micro" option will also be required in order to re-order the 
keyboard. Since there may be several things different about the two kinds 
of -arrow-s, it is convenient to have an alternate -arrow- command, which 
is named -arrowa-. 

The -arrowa- command can cue the student differently, because you 
can alter the arrowhead displayed by -arrowa- by using the -arheada­
command. The -arheada- command is similar to the -ok word- and 
-noword- commands (the tag is what will be shown). Just as an -iarrow­
unit is associated with the -arrow- command, so the -iarrowa- command 
can be used to specify a unit associated with the -arrowa- command. Here 
is a typical setup: 

arheada ... 
iarrow en.:li5h 
i arrowa pens i an 

~ (in an -imain- unit) 

unit 
draw 
at 
write 
arrow 
an5wer 

* 
unit 
draw 
at 
write 

a5kl 
51.0: 151.0: 15'4.0: 51.0 
1612 
What i5 thi5 fii:ure? 
2.015 
trian.:le 

a5k2 
51.0: 151.0: 154.0: 51.0 
1633 

arrow a 2.03.0 
an5wer ~ 

* 
unit 
force 
okword 
no word 

'" 

engl i5h 
clear 
ok 
no 

unit per5ian 
force clear,font,left,micro 
okword u..:, 
noword ~ 

Fig. 12-1. 

MISCELLANY 

253 



The TUTOR Language 

254 

Unit "ask2" has an -arrow a- command, which is associated with unit 
"persian", the unit named in the earlier -iarrowa- statement. Unit 
"persian" clears out any existing -force- options and sets up the appropri­
ate typing conditions for the student. Unit "persian" also redefines the 
words to be shown for correct and incorrect responses. The -answer­
command in unit "ask2" has the Persian for triangle. The student will see 
a "-" instead of a " ~" as a cue to give a response, thanks to the -arheada­
command. On the other hand, the standard -arrow- command in unit 
"askl" has associated with it the -iarrow- unit "english", which clears the 
-force- options and sets the "ok" and "no" words to English words. 

While this machinery is particularly valuable in language lessons, it 
is also useful whenever your -arrow-s fall into two rather different 
categories. An example might be a physics lesson in which some -arrow-s 
require sentence responses and other -arrow-s require algebraic or 
numerical responses. 

Some additional TUTOR commands which are particularly help­
ful in foreign language lessons include -change-, -getword-, -getloc-, 
-ge.tmark-, and -compare-. As an example of the -change- command, the 
statement "change symbol comma to word" (which must be placed in the 
initial entry unit) will change the normal meaning of a comma as an 
ignorable punctuation mark, so that the comma will be treated as a 
separate word. This is useful when teaching punctuation, where you 
want to check specifically for commas. The -getword- command is similar 
to -storen- and is used to pull apart the student's response into separate 
words. The -getloc- command will tell you where a particular student 
word is on the screen, so that you could draw a box around that word. The 
-getmark- command gives you information on how TUTOR marked up 
the student's response, including whether a word was incorrect, mis­
spelled, or out of word order. The -compare- command permits you to 
check a student's word against a stored list of words (in a common, for 
example), including spelling aspects. 

Routers and -jumpout-

A lesson can be designated as a "router" which routes students 
through the many lessons making up a complete course. A router is 
associated with a course. Students registered in a course which uses a 
router will upon sign-in be sent first to the router, not to the lesson 
specified by the restart information. A typical router might ask the 
student, "Do you want to resume studying the lesson you last worked 
on?" If the student says yes, the router executes a "jump out resume", 
which means "jump out" of this lesson into the lesson mentioned in the 



tag, with "resume" having the special meaning "resume at the restart 
point". If the student does not want to resume, the router might offer the 
student an index of available lessons. Suppose the student chooses a 
lesson on the list whose name is "espnum". Then the router does a 
"jumpout espnum" to take the student to that lesson. (The -jumpout­
command can be conditional.) Upon completion of lesson "espnum", (by 
"end lesson") the student is brought back into the router. If the lesson 
executed a -score- command, the router can use the corresponding value 
of system variable "lscore" to help decide how to route the student. The 
router might ask the student what he or she wants to do next, or the router 
might immediately take the student to an appropriate lesson. 

Generally speaking, -jumpout- commands should be placed only in 
routers, not in instructional lessons. Following this practice insures that 
lessons can be plugged into routers on a modular basis. An exception 
exists in the case where one instructional package is spread over two or 
three physical lessons, in which case -jumpout- is used to connect the 
lessons. 

A router can use up to fifty "router variables" (vr 1 through vr50) 
which are not affected by the instructional lessons. These can be used to 
keep track of which lessons have been completed, how many times they 
have been reviewed, how much time was spent in each lesson, etc. 

Instructor Mode 

Authors write and test lessons, and students study these lessons. 
Instructors choose lessons from the library of available lessons to make 
up a course for their students. Instructors also register students, monitor 
their progress, leave messages for the class or for individual students, etc. 
There is an "instructor mode" which makes it easy for instructors to do 
these things without knowing the TUTOR language. The instructor mode 
is based on a router coupled with a mechanism for setting up a roster of 
students. The options available through this router are sufficiently 
flexible to make it unnecessary in most cases to write specialized routers. 

Special "terms" 

Authors have a number of special "terms" to help them in curricu­
lum development. If you press TERM and type "step", you can step 
through your lesson one command at a time. (A continued -calc- counts as 
one command.) This is extremely helpful in tracking down logical errors 
in a lesson. After each step, you can check the present value of student 

MISCELLANY 

255 

Bruce
Rectangle

Bruce
Rectangle



The TUTOR Language 

256 

variables. There is also a -step- command which will throw the lesson 
into the step mode. The step features are operative only for authors 
testing their own lessons. 

"TERM-cursor" provides you with a cursor which you can move 
around the screen using the "arrow" keys. Press "f" for fine grid or "g" 
for gross (coarse) grid. Also press "f" or "g" to update the display of the 
current cursor location. This facility is useful for deciding what changes 
to make in the positioning of displays on the screen. 

"TERM-consult" notifies PLATO consultants of your request for 
help. When a consultant becomes available, he or she will talk to you by 
typing at the bottom of your screen. The consultant's screen has the same 
display you have on your screen. It is as though the consultant were 
looking over your shoulder as you demonstrate the problem. You can talk 
to the consultant by typing sentences at -arrow-s or by hitting TERM and 
typing. (If you press NEXT, and you have typed eight or fewer charac­
ters, your sentence will be taken as a -term- to look for in the lesson. 
Otherwise your line is erased so that you can type some more.) The 
consultants not only know TUTOR well but they have also had a great 
deal of experience in helping authors. 

"TERM-talk" asks you for the name of the person you want to talk to, 
then pages that person if the person is presently working at a PLATO 
terminal. The person called accepts the call by hitting TERM and typing 
"talk". The two of you can then talk to each other at the bottom of the 
screen, but neither of you can see what is on the rest of the other person's 
screen. If you want the other person to see all of your screen, press 
shift-LAB, which puts you into a mode similar to TERM-consult. 

"TERM-calc" provides a convenient one-line desk calculator at the 
bottom of the screen. Authors get normal, octal, and alphanumeric 
results. To avoid confusion, students who use TERM-calc are not shown 
the octal and alphanumeric displays. 



Appendices 
Appendix A. Where to get further information 

Appendix B. List of TUTOR commands 

Appendix C. List of built-in -calc- functions 

257 



258 

Appendix A 
Where to Get Further Information 

The document "Summary of TUTOR Commands and System Varia­
bles" by Elaine Avner lists each TUTOR command, gives the basic form 
of the tag, and notes any restrictions such as maximum number of 
arguments or maximum length of names. Lesson "aids" available on 
PLA TO provides detailed interactive descriptions of each command, as 
well as a wealth of other information useful to authors. 

Lesson "notes" on PLATO provides a forum for discussing user 
problems. You can write notes to ask questions or to suggest new features 
that would be helpful in your work. You can read notes written by other 
users, including replies to your notes. Replies to programming questions 
generally appear within one day. (For faster service, use TERM-consult.) 
An extremely important section of "notes" is the list of announcements of 
new TUTOR features. Check this section regularly for announcements of 
new TUTOR capabilities. The announcements are followed within a few 
days by detailed descriptions in "aids". 

Sometimes "notes" will announce a change in the TUTOR language 
involving an automatic conversion of existing lessons. For example, at 
one time there were several different commands (-line-, -liner-, -figure-, 
and -figuref-) which did what -draw- now does. When -draw- was 
implemented, all existing PLATO lessons were run through an automatic 
conversion routine to change the old commands into appropriate -draw­
commands. It is probable that other such refinements will be made in the 
future. Therefore, be sure to read notes and aids regularly. 

Bruce
Rectangle



Appendix B 
List of TUTOR Commands 

Display Calculations Sequencing Student Responses Other 

at,atnm gorigin calc unit arrow,endarrow pause 
write axes calcc entry iarrow catchup 
writec bounds calcs nextnow arrowa time 
erase scalex define next,next1 iarrowa step 
eraseu scaley do back,back1 long keytype 
size Iscalex exit help,help1 jkey group 
rotate Iscaley doto data,data1 copy,edit collect 
mode labelx goto lab,Iab1 force inhibit 
charset labely branch term answer,wrong enable 
lineset markx transfr base answerc,wrongc disable 
micro marky zero end concept,miscon dataon 
char gat,gatnm set restart vocabs,vocab area 
plot graph randu imain list,endings output 
show hbar setperm finish ansv,wrongv outputl 
showa vbar randp do ansu,wrongu readset 
showe gdraw remove join exact,exactc readd 
showo gbox modperm exit touch,touchw dataset 
showt gvector pack,packc goto ok,no,ignore datain 
showz gcircle move jump ans dataout 
draw gdot search jumpout match 
box polar compute eraseu specs 
vector delta ito a nextop,next10p or 
circle funct clock backop,back10p storea 
circleb slide name helpop,help10p storen 
dot play course dataop,data 1 op store 
window ext date labop,Iab10p storeu 
rorigin day termop judge 
rat,ratnm find join 
rdraw fi ndall bump 
rbox common put,putd,putv 
rvector comload loada 
rcircle storage okword,noword 
rdot stoload eraseu 

initial getword 
reserve getloc 
release getmark 
sort compare 
sorta change 

259 



The TUTOR Language 

260 

Additional TUTOR Commands Not Discussed in 
This Book 

abort 
add1 

abort normal updating of common or student record 
add one to a variable 

allow allow an instructional lesson to use router common 
a/tfont use alternate font for all writing 
backgnd run lesson at lower priority 
chartst 
close 
dataoff 
delay 
exactv 
foregnd 
iferror 
lesson 
open 
press 
readr 
record 
route 
routvar 
stop 
sub1 
tabset 
timel 
timer 
use 

check whether charset already loaded 
like -Ioada- but takes one character per variable 
turn off student response data collection 
timed blank output for precise display timing 
character string match to student response 
run lesson at normal (non-background) priority 
specify unit to go to if -ca/c- error 
sets "Idone" to inform router about lesson completion 
like -storea- but stores one character per variable 
presses a key for the student 
read a student record for data processing 
record a message on audio device 
specify router units for end of instructional lessons 
set up router variables 
like -back- but for the STOP key 
subtract one from a variable 
set up tabs for TAB key 
set a time within a lesson 
router sets a time for a lesson to finish 
use sections of another lesson to prepare this lesson 



Appendix C 
List of Built-in-Calc-Functions 

sin (x) 
cos(x) 
arctan(x) 

sine 
cosine 
arctangent 

Angles are measured in radians. For example, sin(45) means sine of 45 
radians, but sin (45°) means sine of 45 degrees (0.707). The degree sign 
(MICRO-o) converts to radians. Similarly, arctan(l) is .785 radians, 
which can be converted to degrees by dividing by 1°, the number of 
radians in one degree; arctan(I)/l° is 45. Using the degree sign after a 
number is equivalent to multiplying the number by (21T/360). 1T 
(MICRO-p) is 3.14159 .... 

sqrt(x) 
log(x) 
In(x) 
exp(x) 

abs(x) 
round(x) 
int(x) 
frac(x) 
sign(x) 

=,~,<,>,~,~ 

not(x) 
x $and$ y 
x $or$ y 

x $c1s$ y 
x $ars$ y 
x $mask$ y 
x $union$ y 
x $diff$ y 
bitcnt(x) 

square root; can also be written X 1/ 2 or x· 5 

logarithm, base 10 
natural logarithm, base e 
ex 

absolute value; abs( -7) is 7 
round to nearest integer; round(8.6) is 9 
integer part; int(8.6) is 8 
fractional part; frac(8.6) is 0.6 
+1 if x>0, 0 if x=0, -1 if x<0 

produce logical values (true=-1,false=0) 
inverts logical values (true-false) 
true if both x and yare true 
true if either x or y is true (or both) 

circular left shift x by y bit positions 
arithmetic right shift x by y bit positions 
sets bits where both x and y have bits set 
sets bits where either x or y has bits set (or both) 
sets bits where x and y differ (exclusive union) 
counts bits 

The logical operators (=, =F, <, >, ~ and~) consider two quantities to be 
equal if they differ by less than one part in 1011 (relative tolerance) or by 

261 

Bruce
Rectangle



The TUTOR Language 

262 

an absolute difference of 10-9 • One consequence is that all numbers 
within 10-9 of zero are considered equal. Similarly, "int" and "frac" 
round their arguments by 10-9 so that int(3.999999999) is 4, not 3, and 
frac(3.999999999) is 0, not 1. This is done because a val ue of 3.999999999 
is usually due to roundoff errors made by the computer in attempting to 
calculate a result of 4. 

System Variables 

DISCUSSED IN NOT DISCUSSED IN 
THIS BOOK THIS BOOK 

anscnt baseu aarea 
args capital aarrows 
clock dataon ahelp 
formok entire ahelpn 
jcount error aok 
key errtype aokist 
opcnt extra asno 
spell judged aterm 
station Idone atermn 
varcnt Iscore atime 
vocab Istatus auno 
where mainu 
wherex mode 
wherey nhelpop 

ntries 
order 
phrase 
size 
user 
wcount 
zreturn 

The third column consists of counters associated with the 
-area- command. 

There are some additional system variables available for special purpos­
es. See the on-line PLATO aids for information. 



Index 

-abort- Appendix B 
absolute graphics commands 189, 190 
accent marks 10 
ACCESS key 175, 182 
active lesson 239 
-add1 - Appendix B 
aids Appendix A 
algebraic and numerical judging 126 

algebraic 128 
judging equations 131 
warning about (1/2x) 132, 135 

with scientific units 133 
warning about (3+6cm) with -storeu-

135 
-all ow- Appendix B 
alphanumeric information 

-storea- 104 
-showa- 53, 104 
10 characters per variable 105, 156, 162, 

220 
difference from numeric 105, 220 
alphanumeric to numeric conversion 

231,235 
alternate font 175 

unaffected by -size- and -rotate- 179 
using -char- and -plot- 199 

-altfont- Appendix B 
and ($and$) logical operator 81 
And(array) 216 
Anderson, B. 4 
animations 28 

use of iterative -do- 49 
smooth animations 178 

-ans- 154 
anscnt system variable 113 

zeroed when judging starts and by 
-specs- 113 

zeroed by judge rejudge 120 
not changed for synonomous -concept-s 

116 
cursor moving 122 
with -or- 251 

-ansu- 135 
warning about (3+6cm) with -storeu- 135 

-ansv- 126 
-wrongv- 126 
in arithmetic drill 127 
with opcnt 127 
specs noops,novars 128 
concept/vocabs similar to ansv/define 

128 
algebraic judging 128 

263 



Index 

264 

-ansv- (Cont.) 
warning about (1/2x) 132 

affected by -bump-, -put-, and judge re­
judge 232 

-ansva- Appendix B 
-answer- 16 

markup of errors in student response 17 
with numbers 106 

Limitations 106 
notoler, nodiff 107 

with phrase (Santa "Maria) 17 
specs 107 
caps in tag with specs okcap 107 
no punctuation marks in tag 108 

punctuation ignored in student re­
sponse 108 

with -list- 110 
-answer- useful in limited context III 

see -concept- III 
interaction with -concept- 114 
with negation 125 
with blank tag 126 
-exact- compared with -answer- 136 
conditional -answer- (-answerc-) 137 
using -put- to find pieces of words 159 

-answerc- 137 
Arabic 177,253 
-area-252 
args system variable 55 
arguments 

passing arguments to TUTOR com­
manes 53 

passing arguments to subroutines 53 
args system variable 55 
warning to use different variables in 

different subroutines 56 
omitted arguments 55 
order of passing 54 
passing arguments in conditional -do-

79 
passing arguments in -goto- 90 

can be complicated expressions 55 
arc of a circle 26 
-arheada- 253 
arithmetic drill 127 
arithmetic right shift $ars$ 224 

with negative numbers 228 
arrays 214 (also see indexed variables 204) 

array operations 216 
matrix multiplication (dot product), 
vector product, sum, Prod, Min, 
Max, And, Or, Rev, Transp 

arrays (Cont.) 
offset arrays 217 
vertically segmented arrays 231 

arraysegv 231 
-arrow- 15, 96 (also see -arrowa- 253) 

multiple -arrow-s in a unit 21, 98 
displays arrowhead on screen 16, 141 

inhibit arrow 122 
location in unit remembered 96, 141 
restarting at -arrow- for each response 

97, 141 
satisfy all -arrow-s before leaving main 

unit 97, 142 
search for additional -arrow-s 97, 99, 142 

-goto- skipped 147 
delimits preceding -arrow- 97, 99, 142 
changes search state to regular state 99, 

142 
sets default long 104 
summary of processing stages 141 

interactions with other commands 149 
sets default long, jkey, copy 150 

rules for attaching units containing 
-arrow- 100, 148 

merely collect response 164 
sets left margin 172 
with response erasing 192 
-enable- for touch input 250 

-arrowa- 253 
different arrowhead from -arheada- 253 
associated -iarrowa- 253 

assignment of values in a -calc- 46 
multiple assignments 47 
implicitly defined 203 
in -store-/-compute- 235 
specs okassign 235 

assignment symbol 46, 235 
asterisk for comments 20 
attached unit 40, 64, 86 

by -do- 40 
by -goto- 86 

attempts (counting student attempts) 119 
audio device 251 
automated display generation 35 
automatic response-associated erasing 193 
automatic scaling with graphing com-

mands 182 
auxiliary unit (see attached unit) 

Avner, E. Appendix A 
-at- 14, 24 (also see -atnm- 172) (-gat- 183, 

-rat- 189) 
default -at- after response 97 

Bruce
Rectangle



-at- (Cant.) 
one or two arguments 24, 53, 55 
sets left margin 171 

-atnm- does not set a margin 172 
where system variable 173 
wherex and wherey system variables 174 

-atnm- (-at- with no margin) 172 (-gatnm-
189, -ratnm- 189 

-axes- 183 (also see -bounds- 184) 

-back- 18 (also see -backop- 73) 
-back 1- 69 (also see -backlop- 73) 
-backgnd- Appendix B 
BACK and BACKI return from help se­

quence 62 
-backop- 73 (also see -back- 18) 

alternative to "inhibit erase" 73 
-backlop- 73 (also see -back 1- 69) 

alternative to "inhibit erase" 73 
backspace 9,174 
-base- 63 

base pointer and base unit 63 
q or blank to clear 64 
automatically cleared when base unit 

reached 64 
set base pointer 63, 64, 198 

base unit 19, 63 
basic TUTOR 13 
binary notation 209, 218 
bit manipulation 217 

$cls$ circular left shift 223, 224 
$ars$ arithmetic right shift 224 

with negative numbers 228 
$mask$ 225 

constructing masks in octal 226 
$union$ 229 
$diff$ 229 
bitcnt function 229 
packing data 225 
octal numbers 226 
complementing bits 228 
byte manipulation 229, 230 

bitcnt function 229 
-bounds- 184 
-box- 25 (-gbox- 185, -rbox- 189) 
-branch- 212 (also see -go to- 85, -doto-

213) 
statement labels 212 
must not have duplicate labels 212 
cannot braneh past -entry- 212 
speed advantage compared with -go to-

212 

branching 59 
conditional 77 
within a unit, see -branch- 212 

broken or dashed circle -circleb- 26 
-bump- 120, 156 

combinations of -put- and -bump- 158 
with shift characters 158 
affects -store-/ -ansv- 232 

bump shift specs option 109 
byte manipulation 229, 230 (also see bit 

manipulation) 

calc special term 256 
-calc- 46, 201 

conditional -calc- (-calcc- and -calcs-) 84 
x is not the fall-through option 84 

summary 201 
statement label equivalent to -calc- 212 
with integer variables 222 
functions Appendix C 

-calcc- 84 (see -calc-) 
-calcs- 84 (see -calc-) 
calculations 43 
carriage returns and left margins 171 
-catchup- 32 
central memory 241 
-change- 108, 136,254 
changes in TUTOR Appendix A 
character grid 

coarse 14 
fine 23 

character set 176 
character strings 159 

see -bump- and -put- for student charac­
ter strings 

see -pack-, -move-, and -search- for other 
strings 

single quote marks ('dog') 160,223 
double quote marks ("dog") 165, 223 
6-bit character codes 220 
and -calc- 221 
and -compute- 231 

characters 
eharacter grid (coarse 14, fine 23) 
character size (8x 16) 34 
10 per variable 105, 220 
special characters 175 

-char- 199 
-charset- 176, 181 
-ehartst- Appendix B 
charts (see graphing commands) 
Cheshire cat 40 

Index 

265 



Index 

266 

Chinese characters with -rdraw- 188 
-circle- 26 (-gcircle- 185, -rcircle- 189) 

ellipses 185, 189 
-circleb- 26 
circular left shift $cls$ 222, 224 
clear (force option) 253 
-clock- command 163 
clock system variable 163 
-c1ose- Appendix B 
coarse grid 14, 23 
command 13 

list of commands Appendix B 
comments (*) 20, ($$) 26 
-comload- 243, 247 
-common- 237 

temporary common 237 
uses of temporary common 239 

-common- not executed 238 
permanent common 240 

splitting among many students 248 
and the swapping process 240 
reserving common 246 

common variables 237 (also see -common-) 
-compare- 254 
compile 231 
complementing bits 228 
-compute- 231 (see -itoa- 235) 
conditional commands 77 (also see -if- 91) 

condition can be complicated expression 
79 

condition rounded to nearest integer 79, 
80 

with logical expressions 80 
more precise due to rounding 80 

consult special term 256 
continued -write- statement 171 
conversions 

betwecn octal and decimal 226 
between alphanumeric and numeric 

231,235 
-course- 163 

course registration 199 
-concept- 111 (see -vocabs- 111) 

with numbers 113 
with numbered vocabulary words 117 
synonyms 111 
with phrases (Santa*Maria) 116, 118 
with endings 116, 118 
markup of student response 113 

missing words 113 
misspellings 113 

specs okextra 1 i3 

-concept - (Cont.) 
interaction with -answer- or -wrong- 114 
with judge wrong 115 
synonomous -concept-s 116 

anscnt unchanged 116 
with negation 125 
concept/vocabs similar to ansv/define 

128 
-copy- 150, 10 

copy key disabled by -arrow- 150 
copy compared with edit 150 

cross product (vector product) 216 
cursor moving routine 122 

with -match- 124 
with -keytype- 166 

cursor special term 256 
Curtin, C. 5 
Cyrillic characters 176 

dashed or broken circle (-circleb-) 26 
data from student responses 251 
-data- 69 (also see -dataop- 73) 
-dataoff- Appendix B 
-dataon- 252 
-dataop- 73 (also see -data- 69) 
data bases 237 
data files 252 
-datain - 248 
-dataout- 248 
dataset operations 248 
-dataset- 248 
-data1- 69 (also see -data1op- 73) 

-data1op- 73 (also see -data1- 69) 
-date- 163 
Davis, C. 2 
-day- 163 
debugging facilitated by -do- 42 
decimal and octal conversions 226 
-define-47,202,235 

use -define-, avoid primitives 48 
-define- must precede related -calc- 47 
explicit multiplication required 48, 235 
overriding system variable definitions 

56,235 
student define set 103, 128,231,235 

with algebraic judging 128 
with scientific units 133 
with indexed variables 205 
in grafit 234 

defining functions 202 
warning about defining v, n, vc, or nc 

205 



-define- (Cont.) 
defining arrays 214 
defining indexed variables 205 
defining segmented variables 207 

-delay- Appendix B 
-delta- 185 
desk calculator 10 1 
dialog (with -concept- and -vocabs-) 111 
dictionary using -term- 71 
$diff$ 229 
dimensionality of scientific units in 

-storeu- 133 
-disable- 250 
disk permanent storage 241, 242 
-do- 40 (also see -doto- 213, -if- 91) 

iterative 49 
compared with conditional -goto- 85 
caution about slowness of segmented 

variables 211 
conditional 78 (also scc -if- 91) 
conditional iterative -do- 90 

special meaning of q and x 91 
undo when -unit- command encountered 

87 
do q like goto q 89 

like -join-, except regular only 98, 
142 

skipped during judging and search 98 
do-ing -arrow-s 100 
text-insertion nature 101 

-goto- causes exception 87, 145 
judging command prevents un-do-ing 

142, 145 
do level saved at -arrow- 149 
nested -do-s 206 
-exit- from -do-s 236 

dollar signs for comments 26 
-dot- 200 
-doto- 213 
dot product (matrix multiplication) 216 
dots on screen 24 

-dot- 200 
display screen 3 
displays 23 

automated display generation 35 
-draw- coarse grid 14, fine grid 25 

automated display generation 35 
example with complicated expressions 

52 
from current position 174, 186 
skip option 185 
updating of where, wherex, wherey 185 

-draw- coarse grid (Cont.) 
large number of points 186 
comparison with -gdraw- 189, 190 
comparison with -rdraw- 189, 190 
see -window- 190 
erasing associated with response 195 
making dots 200 

drills 
arithmetic 127 
vocabulary 137, 138, 196 

-edit- 150, 9 
edit compared with copy 150 

ellipses (-gcircle- 185, -rcircle- 189) 
-else- 91 
-elseif- 92 
embedded show commands in -write­

statement 53 
s for -show-, a for -showa-, t for 

-showt-, e for -showe-, and z for 
-showz- 53 

in -writec- 84 
in -pack- and -packc- 162 

-enable- 250 
-end- 19, 63, 64, 198 

ignored in non-help sequence 64 
end lesson 139, 255 
no -end- with -helpop- 73 

-endarrow- 21, 99, 100 
delimits preceding -arrow- 21, 100, 142 
changes search state to regular state 100, 

142, 148 
pause between -arrow-s 100 
at end of unit 100 
required if -arrow- done or joined 100, 

148 
-endif- 92 
-endings- 116, 117, U8 
-entry- 89 (also sec -unit-) 

use in vocabulary drill 197 
equality rounding 

in logical expressions 81 
equations in algebraic judging 131 
-erase- 28, 33 

automatic full-screen erase for new main 
unit 22, 60 

inhibit erase 151, 197 
explicit -erase- 198 

-nextop- alternative to "inhibit erase" 73 
erase mode 33 

used in erasing responses 196 
-eraseu- 195 

Index 

267 

Bruce
Rectangle

Bruce
Rectangle



Index 

268 

erasing student responses 192 
-exact- 136 

handles punctuation marks 136 
blank -answer- not blank -exact- 126 

-exactc- 136 (conditional -exact-) 
exclusive union (see $diff$ 229) 
-exit- 236 
exponential show command, -showe- 53 
exponents in floating-point numbers 219, 

229 
expressions (mathematical) 43 

usable everywhere 52 
logical expressions 80 

mixing logical and numerical expres­
sions 81 

student expressions 101, 102 
-ext- 251 
external input 250 
external output 251 

false (in logical expressions) 80 
-find- 235 (also see -search- 161) 
-findaII- 236 
fine grid 23 
-finish- 239 
flags using segmented variables 210 
floating-point numbers 219, 229 
font 11, 175 

force font 177 
unaffected by -size- and -rotate- 179 
using -char- and -plot- 199 

-force- 104 
force clear 254 
force long 104 
force font 177 
force left 177, 253 
force micro 253 

-foregnd- Appendix B 
foreign languages 137, 196, 252 
formok system variable 102, 129, 134, 233 
-funct- 185 (also see 233) 
function keys 9 
functions 48, 202, Appendix C 

parentheses around function arguments 
48,102 

dimensionless arguments for -storeu-
134 

defining your own functions 202 
int (integer part) 204, 222 
sin (sine) 48 
sqrt (square root) 52 
modulo 204 
bitcnt (bit count) 229 

functions (Cont.) 
plotting functions 185, 233 
array functions 216 

-gat- 183 (also see -at-) 
-gbox- 185 
-gcircle- 185 
-gdraw- 183 (also see -draw- and -rdraw-) 

comparison with -draw- 189, 190 
comparison with -rdraw- 189, 190 

-getIoc- 254 
-getmark- 254 
-getword- 254 (also see -storen- 125) 
Ghesquiere, J. 2 
-gorigin- 183 

comparison with -rorigin- 189 
-goto- 85 (also see -branch- 212, -doto-

213) 
mild form of -jump- 85 
cut off a unit 85 
does not change main unit 85 
relation to -do- 85, 86, 87 
exception to text-insertion nature of -do-

87, 146 
summary of basic properties 88 
goto q 88, 139 
with -entry- 89 
compared with iterative -do- 90 
passing arguments with -go to- 90 
a regular command 98, 146 
skipped during judging and search 98 
must not use in attached -arrow- unit 

100,148 
grafit language 234 
-graph- 183 
graphics 23 

automated display generation 35 
comparison of absolute, relative, and 

graphing 189, 190 
graphing commands 182 -gongm-, 

-axes-, -bounds-, -scalex-, -scaley-, 
-labelx-, -labely-, -lscalex-, -lscaley-, 
-markx-, -marky-, -gat-, -gatnm-, 
-graph-, -hbar-, -vbar-, -gdraw-, -gbox-, 
-gvector-, -gdot-, -polar-, -delta-, 
-funct-

grid 23 
-group- 167 (see -keytype- 166) 

with touch panel 168 
-gvector- 184 

halfcirc subroutine example 46 
-hbar- 183 (also see -vbar- 183 



Hebrew 177,253 
-help- 18, 62 (also see -helpop- 72) 

later -help- overrides earlier help 21 
-helpop- 72 

return to waiting point, not start of unit 
73 

no -end- command 73 
-help 1- 69 
-help 10p- 73 
help sequence 62 (also see -helpop- 72) 

help sequence is a slow subroutine 66 
return is to beginning of base unit 66 

converting between help and non-help 
sequences 64 

use of -jkey- to give help 152 
importance of enabling HELP key 154 
with inhibit erase 198 

-iarrow- 75, 155, 253 
-iarrowa- 253 
ieu (see initial entry unit) 
-if- 91 
-iferror- Appendix B 
-ignore- judging command 122 
-imain- 73 
inactive lesson 239, 241 
indenting with -if-/-else- 92 
index for students to use 

with -term- 70 
with -imain- 73 
setting and clearing -imain- 74 
with -store-/-ok- 103 
with -match- 125 
with -ansv- 126 

indexed variables 204 
with -storeu- dimensionality 133 
warning about defining v, n, vc, or nc 

205 
indexed common variables 238 

-inhibit-
inhibit arrow 122 
inhibit erase 151, 197 

interaction with -restart- 199 
-nextop- alternative to "inhibit erase" 

73 
initial entry unit (ieu) 177 

with compute pointers 234 
relation to -restart- 178, 199 

initializations 
general questions of initialization 66, 67 
unit pointers cleared when new main 

unit entered 70 
use of -imain- 74 

initializations (Cant.) 
zeroing variables 207 
zeroing compute pointers 232 

in ieu 234 
-window- not initialized by main unit 

191 
-size- and -rotate- not initialized by main 

unit 190 
with -restart- 199 

initializing variables 199 
zeroing temporary common 238 
zeroing -storage- 247 

insertion of subroutine (by -do-) 40 
instructor mode 255 
int function for integer part 204, 222 
integer variables 221 

common integer variables 238 
interactions of -arrow- with other com­

mands 149 
Introduction to TUTOR, Ghesquiere, 

Davis, Thompson 2 
iterative -do- 49, 67 
-itoa- 235 

jcount system variable 105 
affected by specs bumpshift 109 

and -bump- 156 
and -put- 157, 159 

-jkey- 150, 151 
default set by -arrow- 150 
with response erasing 192 

-join- 98 (also see -do-) 
universally executed (regular, judging, 

search) 98, 142 
like -do- except universal 98, 142, 144, 

155 
join-ing -arrow-s 99 
text-insertion nature 101, 145 

-goto- causes exception 87, 145 
judging command prevents un-do-ing 

142, 145 
repeated execution in regular, judging, 

search states 142 
-judge- U5, 118 

-judge- is a regular command 115, 118 
judge wrong used to stay at -arrow- U5, 

197 
does not stop processing 119 

judge no quit does stop processing 
U9 

in student data 252 
judge ok 118 

does not stop processing U9 

Index 

269 



Index 

270 

-judge- (Cant.) 
judge okquit does stop processing 

119 
judge continue 119, 153 

in algebraic judging 131 
judge rejudge 120, 156 

affects -store-/ -ansv- 232 
judge ignore 121 

stops processing 121 
judge exit 123 
judge no 123 

does not stop processing 119 
judge noquit does stop processing 

119 
in student data 252 

judge quit, ok quit, noquit 123 
conditional form of -judge- 118 

judging commands 95 
(see -arrow-, -answer-, -wrong-, 

-answerc-, -wrongc-, -concept-, 
-miscon-, -match-, -ansv-, -wrongv-, 
-ansu-, -wrongu-, -store-, -storea-, 
-storen-, -exact-, -exactc-, -ignore-, 
-ans-, -bump-, -put-, -putd-, -specs-, 
-endarrow-) 

summary 139 
stop processing in regular state 97, 

144 . 

may terminate judging state 97 
ok and no judgments 97 

default no 97 
require an -arrow- command 96 
skipped in search state 97, 98 
delimit regular commands 98, 142 
accessed by -join- 98 
switching from regular to judging state 

119 
judging copy of student response 120 

affected by -bump- 156 
judging keys 150 (see -jkey-) 
judging student responses 95 
-jump- 68 

initializations 68 
base pointer not affected 68 
cancels previous -do-s 68 
screen erased 68 

used with -base- to initiate help se­
quence 68 

compared with -goto- 85 
-jumpout- 254 

key system variable 152, 165 
key names 152, 165 
catching every key 164 
key codes 165 
time up 166 
with touch and external input 250 

key set or keyboard 8 
-keytype- 166 (sec -group- 167) 

with touch panel 168 
keyword judging 123 
-kstop- Appendix B 

-lab- 69 (also see -labop- 73) 
-labl- 69 (also see -lablop- 73) 
labeling graphs 183 
labels on statements for -branch- 212, for 

-do to- 213 
must not have duplicate labels 212 

-labelx- 183 (see -markx- 184) 
-labely- 183 (see -marky- 184) 
-labop- 73 (also see -lab- 69) 
-lablop- 73 (also see -labl- 69) 
languages 137, 196,252 
large-size writing 26 
left shift (see circular left shift 222, 224) 
leftward writing 177,252 
lesson samples 4-6 
lesson space 181,240 
lesson not swapped 244 
levels of -do- (10 permitted) 41 
line drawings (see -draw-) 
line-drawn characters (see -size- and 

-rotate-) 179, 188 
-lineset- 179, 181, 188 
-list- 110 

in -answer- and -wrong- 110 
-loada- 159, 160 
locking common 246 
logical expressions 80 

in conditional commands 80 
mixed with numerical expressions 81 
logical operators =,'>",<,>,"","'" 80 

roundoff on equality 81 
logical operators $and$, $or$, (not) 81, 

82 
-long- 103 

force long 104, 150 
follows -arrow-, precedes judging com­

mands 104 
modifies -arrow- 104 

Bruce
Rectangle



-long- (Cont.) 
must precede -specs- 107 
long 1 with judge ignore 122 
default set by -arrow- 150 
-edit- for long greater than 150 charac-

ters 150 
-lscalex- 184 (see -scalex- 183) 
-lscaley- 184 (see -scaley- 183) 
lscore (associated with -score-) 255 

main unit 59, 64, 85 
not affected by -goto- 85 

margin set by -at- and -arrow- 171 
marker 

-arrow- marker 96, 97 
-specs- marker 109, 114 

markup of response 97 
-markx- 184 (see -labelx- 183) 
-marky- 184 (see -labely- 183) 
masking in bit manipulations ($mask$) 

225 
-match- 123 

also see -storen- 125 
in grafit language 234 

mathematical expressions 43 
matrix multiplication 216 
matrix operations 214 (also see arrays) 
Max(array) 216 
merge (see $union$ 229) 
-micro- 181 

force micro 253 
microfiche 249 
micro-key options 10 
micro table 181 
Min(array) 216 
-mode- (erase, write, rewrite) 33, 174, 179 

conditional form 85 
-modperm- 138 (also see permutations) 
modulo function 204 
-move- 160 
multiple -arrow-s 21, 99 
multiplication 

explicit between defined names 48 
(except for students 103) 

ta~es precedence over division 44 
music 251 

-name- 163 
naming variables (-define-) 47 
ncl-ncl500 common variables 243 

negative words 110, 125 
-next- 18, 59 (also see -nextop- 73) 

put near beginning of unit 61 
successive -next- commands override 61 
"next " or "next q" to clear 

pointer 61 
NEXT key 9, 60 

always a judging key 150 
ignoring extra NEXT keys 155 

next physical unit 60 
-next 1- 69, 70 (also see -next 10p- 73) 
-nextnow- 18, 20 
-nextop- 73 (also see -next- 59) 

alternative to "inhibit erase" 73 
-next 10p- 73 (also see -next1- 69) 

alternative to "inhibit erase" 73 
-no- 103, 123 

in arithmetic drill 127 
nodiff specs option 107 
non-help sequence 64 

converting between help and non-help 
sequences 64 

non-numerical parameters specified by 
student 104 

nookno specs option 108 
noops specs option 128 
noorder specs option 18, 108, 116 
noquit (judge option) 119, 123 
not (logical function) 82 
notes Appendix A 
notoler specs option 107 
novars specs option 128 
-noword- 197,253 
nr1-nr50 router variables 255 
numbering vocabulary words 117 
numeric information different from alpha-

numeric 105 
range of numerical values 217 

numerical parameters specified by student 
101, 126 

checking for negative 119 
numerical and algebraic judging 126 

algebraic 128 
n1-n150 student variables 221 

octal numbers for masks 226 
octal show command, -showo- 53, 227 
offset arrays 217 
-ok- 101, 119, 123 
okassign specs option 235 

Index 

271 

Bruce
Rectangle

Bruce
Rectangle



Index 

272 

okcap specs option 107 
okextra specs option 18, 108, 113 
okquit (judge option) 119 123 
okspell specs option 107, 116 
-okword- 197, 253 
opcnt system variable 128, 129 
-open- Appendix B 
operations (see precedence) 
optional words 

in -answer-/-wrong- 16 
in -vocabs- III 

-or- judging command 251 
or ($or$) logical operator 81 
Or(array) 216 
-output- 252 
-outputl- 252 

-pack- 162 
-packc- 162 
parentheses around function arguments 

48, 102 
partial circle 26 
passing arguments 53 (see arguments) 
-pause- 28, 164 

between -arrow-s, with -endarrow- 100 
catching every key 164 
no key display 167 
no help at blank -pause- 167 
pause keys=a,b,etc. 168 

help, term, etc. possible 168 
NEXT key special 168 

with touch panel 168 
permanent common 240 (also see 

-common-) 
permanent storage area 240 
permutations 138 

-randp- 138 
-setperm- 138 
-remove- 139 
-modperm- 138 
vocabulary drill 137 

Persian 177, 253 
photographic projection 249 
phrase (such as Santa*Maria) 17, 116, U8 
physical next unit 60 
place notation 224 
plasma display panel 3 
-play- 251 
-plot- 199 
plotting functions 233 (also see -funct-

185) 

pointers (next, help, base, etc.) 60 
q or blank to clear pointer 61, 65 
successive commands override earlier 

settings 61, 65 
cleared when new main unit entered 70 
compute pointer 232 

zeroing in ieu 234 
pointing at touch panel 168, 250 
-polar- 1R4 
positioning 23 
powers in floating-point numbers 219, 229 
precedence (of mathematical operations) 

44, 132 
preparing lesson for active use 239 
-press- Appendix B 
primitive variable names (v1-v150) 44, 48, 

235 
Prod(array) 216 
punctuation in responses 108, 126, 136, 

254 
-put- 120, 157 

affects jcount 159 
terminates judging if string too long 157 
combinations of -put- and -bump- 158 
affects -storc-/-ansv- 232 

-putd- 158 (also see -put-) 
-putv- 158 (also see -put-) 

q (special unit name) 61, 65 
clears unit pointers 70, 79 
goto q 88, 139 
in conditional iterative -do- 91 

quit (judge option) 123 
quote marks for character strings 

single ('dog') 160, 223 
double ("dog") 165, 223 

random numbers (see -randu- and permu­
tations) 

-randp- 138 (also see permutations) 
-randu- 82 

arithmetic drill 137 
algebraic judging 128, 129 
compared with -randp- 138 

range of numerical values 217 
-rat- 189 
-ratnm- 189 
-rcircle- 189 
-rdraw- 187 

affected by -size- and -rotate- 188 
compared with -gdraw- 189 



readability with subroutines 40 
-readd- 252 
-readset- Appendix B 
records in datasets 248 
-record- Appendix B 
registration records 199, 242 

-storage- not saved 247 
regular commands 96 

skipped in judging state 96, 120, 141, 
146 

skipped in search state 97, 98,142 
-do- and -goto- are regular commands 98 
switching from regular to judging state 

119 
judging command stops and prevents 

un-do-ing 142, 144 
relative graphics commands 189, 190 
-release- 246, 248 
-remove- 139 (also see permutations) 
-reserve- (common 246, dataset 248) 
reserving common 246 
reserving dataset records 248 
responses (see judging) 
response data 251 
-restart- 199 (also see initial entry unit 

177) 
-storage- not saved 247 

restarting a lesson 178 (-restart- command 
199) 

resume (in -jumpout-) 254 
return from help sequence 63, 66 
Rev(array) 216 
rewrite mode 34, 174, 179 
right shift (see arithmetic right shift 224, 

228) 
-rotate- 26 

interaction with -arrow- 149 
affects -writec- 84 
does not affect alternate font 179 
affects -rdraw- even in size zero 188 
not initialized by main unit 190 

-rorigin- 187 
compared with -gorigin- 189 

rounding 
of condition in conditional commands 

79, 80 
in equality operation 81 
in indexed variables 205 
in segmented variables 211 
with integer variables 222 

-route- Appendix B 

routers 254, 255 
router variables (vrl-vr50) 255 
-routvar- Appendix B 
Russian alphabet 176 
-rvector- 189 

-scalex-/-scaley- 183 (also see -lscalex-/ 
-lscaley- 184) 

comparison with -size- 189 
scaling in graphing commands 182 
scientific units 133 (see -ansu-) 
-score- 255 
-search- (character string command) 161 
search state (looking for additional 

-arrow-s) 97, 142 
skips regular and judging commands 97 

segmented variables 207, 230 
table of ranges and space 209 
signed segments 208 
fractional numbers 210 
slowness 211 
equivalent bit manipulations 225 
byte manipulations 229 
vertical segments 230 

segmentv 230 
selective erase (text 28, graphics 33) 
sequencing 59 

summary of sequencing commands 69 
author-controlled and student-controlled 

70 
within a unit, see -branch- 21.2 

-set- (fill array elements) 217 
-setperm- 138 (also see permutations) 
Sherwood, B. 5 
Sherwood, J. 7 
shift character 104, 156, 157, 158, 162 
shift operators ($cIs$ 222, 224) ($ars$ 224, 

228) 
skip in -draw- 185 
-show- 51 

significant figures 52 
-showa- (alphanumeric) 53, 105 

default length 105 
uses 6-bit character codes 220 
ignores null characters 222 
with v or n variables 222 

-showe- (exponential) 53 
-showt- (tabular) 53 
-showo- (octal) 53,228 
-showz- (show trailing zeroes) 53 
automatic erasing 194 

Index 

273 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle



Index 

274 

sign-in/sign-out 199,242 
simulation of judging and search 98 
sin (sine function) 48 
-size- 26 

interaction with -arrow- 149 
affects -writec- 84 
does not affect alternate font 179 
affects -rdraw- 188 
comparison with -scalex- 189 
not initialized by main unit 190 

skipping over main units 59 
-slide- 249 
Smith, S. 4, 111 
smooth animations 178 
-sort- 248 
-sorta- 248 
sorting lists 248 
special characters 175 
specifying parameters 

numerical 
-store- 101 
with -show- 106 

non-numerical 
-storea- 104 
with -showa- 106 

-specs- 17, 18, 107 
notoler, nodiff 107 
bump shift 109 
okcap 107 
okspell 107 

with -concept- 116 
okextra 18, 108, 113 
noorder 18, 108 

with -concept- 116 
nookno 108, 115 
noops, novars 128 
okassign 235 

-specs- is a judging command 107 
-specs- sets a marker 109, 141 

later -specs- overrides earlier marker 
109 

clears anscnt 114 
speech 251 
spell system variable 109 
spelling and -compare- 254 
square root function, sqrt(expression) 52 
statement has command and tag 13 
statement label with -branch- 212, with 

-doto- 213 
must not have duplicate labels 212 

status bank 242 
-step- command 256 

step special term 255 
-stoload- 247 
-storage- 246 (also see -common-) 

not saved on sign-out 247 
zeroed on sign-in 247 

-store- 101 
a judging command 102 
judges no if cannot evaluate 102 
with -show- 106 
compared with -storen- 125 
with -ansv- 126 
concept/vocabs similar to ansv/define 

128 
warning about (l/2x) 132 
affected by -bump-, -put-, and judge re­

judge 232 
no primitive variable names 235 
no assignments without specs okassign 

235 
store values into variables 44 
-storea- 104 

with -showa- 106 
with character string manipulations 159 
opposite of -loada- 159 
compare with -pack- 162 
merely collect response 164 
uses 6-bit character codes 220 
with v or n variables 222 

-storen- 126 
also see -match- 123 and -store- 101 and 

-getword- 254 
-storeu- 133 

terminates judging if error 134 
warning about (3+6cm) with -storeu-

135 
strings 159 (see character strings) 
student define set 103 (also see -define-) 
student responses 95 

storing responses (see specifying param­
eters) 

judging responses (see judging com­
mands) 

student response data 251 
student specification of parameters (see 

specifying parameters) 
student variables (vl-v150) 44 

in displays 45 
compared with common variables 238 
augment with -storage- 246 

-subl- Appendix B 
Sum(array) 216 
superimposing writing 34, 174 



superscripts and subscripts 10, 174 
system variable 55 

anscnt 113 
args 55 
clock 163 
formok 102, 129, 134,233 
jcount 105 

affected by specs bumpshift 109 
and -bump- 156 
and -put- 159 

key 152, 165 
opcnt 128, 129 
spell 109 
varcnt 129, 132 
vocab 115 
where 173 

updating in -draw- 185 
wherex 174 
wherey 174 

subroutines 39 
superscripts and subscripts 174 
swapping process 240, 243 

swapping memory 241 
and common variables 243 

synonyms 
in -answer- 16, 95 (also see -list- 110 ) 
in -concept- 113 (also see -vocabs- 111) 
in numbered vocabulary words 118 

table of square roots 52 
-tabset- Appendix B 
tabular show command, -showt- 53 
tag 13 
talk special term 256 
temporary common 238 (also see 

-common-) 
Tenczar, P. 6 
-term- 70 (also see -termop- 72) 

complementary to -help- 71 
dictionary use 71 
duplicate terms an error 71 
synonyms 72 
step, cursor, consult, talk, calc 255 

terminal capabilities 3, 249 
-termop- 72 
text (see -write-, -size-, -rotate-) 
text insertion of subroutine (by -do-) 40 

-arrow- in subroutine 100, 148 
Thompson, C. 2 
tick marks on graphs 184 
-time- 31 

time-slice 245, 246 
timeup key 166 
tolerance 

with -answer-/-wrong- 107 
with -ansv-/-wrongv- 126 
with -ansu-!-wrongu- 135 
on equality operations 81 

-touch- 251 (also see 168) 
touch panel 168, 250 
transfr- 207 

not with segmented variables 208 
with -common- or -storage- 247 

Transp(array) 216 
tries (counting student attempts) 119 
true (in logical expressions) 80 

unconditional commands 79 (also see con­
ditional commands) 

$union$ 229 (also see $diff$ exclusive 
lillion 229) 

-unit- 14 
terminates preceding unit 87 

see -entry- (which does not terminate) 
89 

must not have duplicate -unit- names 
212 

unit pointers (see pointers) 60 
units (scientific units) 133 
universal execution of -join- 98, 142 
-use- Appendix B 

varcnt system variable 129 
variables 

student variables 44 
with -restart- 199 
with -storage- 246 

indexed variables 204 
with -storeu- dimensionality 133 

common variables 237 
segmented variables 207 
range of numeric values 217 
router variables 255 

-vbar- 183 (also see -hbar- 183) 
-vector- 25 (-gvector- 184, -rvector- 189) 
vertical segments 230 
vocab system variable 115 
-vocab- 116 
-vocabs- 111,252 (see -concept- 111) 

numbering vocabulary words 117 
vocabulary drill 137 
vc1-vc1500 common variables 243 
vrI-vr50 router variables 255 

Index 

275 



Index 

276 

v I-v 150 student variables 44 
where system variable 173 

updating in -draw- 185 
wherex system variable 174 
wherey system variable 174 
-window- 190 
-write- coarse grid 14, fine grid 24 

with embedded show commands 53 
s for -show-, a for -showa-, 
t for -showt-, e for -showe-, and z for 

-showz- 53 
conditional -w~ite- (-writec-) 82 
with left margins 171 
continued -write- statement 171 
successive -write- statements 172 
also see -size- and -rotate-
size 1 versus size 0 188 
automatic erasing 192 
alternate font 

with charset 176 
using -char- and -plot- 199 

write mode 34 
-writec- 82 (also see -write-) 

x is not the fall-through option 83 
special character when using commas 83 
with embedded show commands 84 
affected by -size- and -rotate- 84 
automatic erasing 192 

-wrong- 16 (also see -answer-) 
-wrongu- 135 (also see -ansu-) 
-wrongv- 126 (also see -ansv-) 

with scientific units 135 

x (special unit name) 62, 79 

-zero- 207 
not with segmented variahles 208 

$$ (permits comments to follow tag) 26 
«p embedding -show- in -write- 53 

Bruce
Rectangle

Bruce
Rectangle

Bruce
Rectangle


	Preface

	Contents

	1 Introduction

	2 More on Creating Displays

	3 Bulding Your Own Tools: The -do- Commmand

	4 Doing Calculations in TUTOR

	5 Sequencing of Units Within a Lesson

	6 Conditional Commands

	7 Judging Student Responses

	8 More About Judging

	9 Additional Display Features

	10 Additional Calculation Topics

	11 Manipulating Data Bases

	12 Miscellany

	Appendix A: Where to Get Further Information

	Appendix B: List of TUTOR Commands

	Appendix C: List of Built-in-Calc Functions

	Index




